New results on coherent radar target detection in heavy-tailed compound-Gaussian clutter

K. J. Sangston, F. Gini, M. Greco
{"title":"New results on coherent radar target detection in heavy-tailed compound-Gaussian clutter","authors":"K. J. Sangston, F. Gini, M. Greco","doi":"10.1109/RADAR.2010.5494515","DOIUrl":null,"url":null,"abstract":"In this work we prove that if the texture of compound-Gaussian clutter is modeled by an Inverse-Gamma distribution, the optimum detector is the optimum Gaussian matched filter detector compared to a data-dependent threshold that varies linearly with a quadratic statistic of the data. The compound-Gaussian model presented here varies parametrically from the Gaussian clutter model to a clutter model whose tails are evidently heavier than any K-distribution model. Moreover, we also show that the GLRT, which is a popular suboptimum detector due to its CFAR property, is in fact an optimum detector for our clutter model in the limit as the tails get extremely heavy.","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this work we prove that if the texture of compound-Gaussian clutter is modeled by an Inverse-Gamma distribution, the optimum detector is the optimum Gaussian matched filter detector compared to a data-dependent threshold that varies linearly with a quadratic statistic of the data. The compound-Gaussian model presented here varies parametrically from the Gaussian clutter model to a clutter model whose tails are evidently heavier than any K-distribution model. Moreover, we also show that the GLRT, which is a popular suboptimum detector due to its CFAR property, is in fact an optimum detector for our clutter model in the limit as the tails get extremely heavy.
重尾复合高斯杂波中相干雷达目标检测的新结果
在这项工作中,我们证明了如果复合高斯杂波的纹理是由逆伽马分布建模的,那么与数据相关的阈值(随数据的二次统计量线性变化)相比,最佳检测器是最佳高斯匹配滤波器检测器。本文提出的复合高斯杂波模型在参数上从高斯杂波模型转变为尾部明显比任何k分布模型重的杂波模型。此外,我们还表明,由于其CFAR特性而成为流行的次优检测器的GLRT实际上是我们的杂波模型在极限下的最佳检测器,因为尾部变得非常重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信