Pemodelan Spasial Bayesian dalam Menentukan Faktor yang Mempengaruhi Kejadian Stunting di Provinsi Sulawesi Selatan

A. Aswi, S. Sukarna
{"title":"Pemodelan Spasial Bayesian dalam Menentukan Faktor yang Mempengaruhi Kejadian Stunting di Provinsi Sulawesi Selatan","authors":"A. Aswi, S. Sukarna","doi":"10.35580/jmathcos.v5i1.33499","DOIUrl":null,"url":null,"abstract":"Indonesia merupakan negara dengan prevalensi balita stunting yang tinggi. Salah satu provinsi di Indonesia yang memiliki kasus stunting yang cukup tinggi adalah Provinsi Sulawesi Selatan. Penelitian mengenai kasus stunting dan faktor penyebabnya telah dilakukan. Namun, penelitian tersebut belum mengimplementasikan model Bayesian spasial Conditional Autoregressive (CAR). Penelitian ini bertujuan untuk mengetahui faktor yang mempengaruhi kejadian stunting di Provinsi Sulawesi Selatan dengan mengimplementasikan berbagai model Bayesian spasial CAR Leroux tanpa kovariat dan dengan memasukkan kovariat dalam model. Hasil penelitian menunjukkan bahwa model terbaik dalam memodelkan kasus stunting di Provinsi Sulawesi Selatan tahun 2020 adalah model Bayesian spasial CAR Leroux dengan hyperprior Inverse-Gamma IG(0,5;0,0005) dengan memasukkan kovariat persentase kemiskinan dan persentase balita 0-59 bulan gizi kurang. Persentase kemiskinan dan persentase balita 0-59 bulan gizi kurang berpengaruh positif terhadap kejadian stunting. Semakin tinggi persentase kemiskinan dan persentase balita 0-59 bulan dengan gizi kurang di suatu wilayah, semakin tinggi risiko stunting di wilayah tersebut. 50% kabupaten/kota di Provinsi Sulawesi Selatan berada dalam kategori risiko tinggi stunting. Kota Parepare merupakan kota dengan nilai risiko relatif (RR) tertinggi stunting, diikuti oleh Kabupaten Toraja dan Enrekang. Sebaliknya, Kabupaten Wajo merupakan kabupaten dengan RR terendah, diikuti oleh Kabupaten Luwu Timur dan Bone.Kata Kunci: Stunting, Bayesian, spasial CAR, Leroux  Indonesia is a country with a high prevalence of stunting. One of the provinces in Indonesia that has a fairly high number of stunting cases is South Sulawesi Province. Research on stunting cases and their causes has been done. However, these researches have not implemented the Bayesian Spatial Conditional Autoregressive (CAR) model. This study aims to determine the factors that influence the incidence of stunting in South Sulawesi Province by implementing various Bayesian spatial CAR Leroux models with and without covariates included in the model. The results showed that the best model for modeling stunting cases in South Sulawesi Province in 2020 is the Bayesian spatial CAR Leroux model with hyperprior Inverse-Gamma IG (0.5;0.0005) by including the covariates of the percentage of poverty and the percentage of children under five 0-59 months of malnutrition. The percentage of poverty and the percentage of children under five 0-59 months of malnutrition have a positive effect on the incidence of stunting. The higher the percentage of poverty and the percentage of children aged 0-59 months with malnutrition in an area, the higher the risk of stunting in that area. 50% of districts/cities in South Sulawesi Province are in the high-risk category of stunting. Parepare City is the city with the highest Relative Risk (RR) value for stunting, followed by Toraja and Enrekang Regencies. On the other hand, Wajo Regency is the district with the lowest RR, followed by Luwu Timur and Bone Regencies.Keywords: Stunting, Bayesian, spatial CAR, Leroux ","PeriodicalId":363413,"journal":{"name":"Journal of Mathematics Computations and Statistics","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics Computations and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35580/jmathcos.v5i1.33499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Indonesia merupakan negara dengan prevalensi balita stunting yang tinggi. Salah satu provinsi di Indonesia yang memiliki kasus stunting yang cukup tinggi adalah Provinsi Sulawesi Selatan. Penelitian mengenai kasus stunting dan faktor penyebabnya telah dilakukan. Namun, penelitian tersebut belum mengimplementasikan model Bayesian spasial Conditional Autoregressive (CAR). Penelitian ini bertujuan untuk mengetahui faktor yang mempengaruhi kejadian stunting di Provinsi Sulawesi Selatan dengan mengimplementasikan berbagai model Bayesian spasial CAR Leroux tanpa kovariat dan dengan memasukkan kovariat dalam model. Hasil penelitian menunjukkan bahwa model terbaik dalam memodelkan kasus stunting di Provinsi Sulawesi Selatan tahun 2020 adalah model Bayesian spasial CAR Leroux dengan hyperprior Inverse-Gamma IG(0,5;0,0005) dengan memasukkan kovariat persentase kemiskinan dan persentase balita 0-59 bulan gizi kurang. Persentase kemiskinan dan persentase balita 0-59 bulan gizi kurang berpengaruh positif terhadap kejadian stunting. Semakin tinggi persentase kemiskinan dan persentase balita 0-59 bulan dengan gizi kurang di suatu wilayah, semakin tinggi risiko stunting di wilayah tersebut. 50% kabupaten/kota di Provinsi Sulawesi Selatan berada dalam kategori risiko tinggi stunting. Kota Parepare merupakan kota dengan nilai risiko relatif (RR) tertinggi stunting, diikuti oleh Kabupaten Toraja dan Enrekang. Sebaliknya, Kabupaten Wajo merupakan kabupaten dengan RR terendah, diikuti oleh Kabupaten Luwu Timur dan Bone.Kata Kunci: Stunting, Bayesian, spasial CAR, Leroux  Indonesia is a country with a high prevalence of stunting. One of the provinces in Indonesia that has a fairly high number of stunting cases is South Sulawesi Province. Research on stunting cases and their causes has been done. However, these researches have not implemented the Bayesian Spatial Conditional Autoregressive (CAR) model. This study aims to determine the factors that influence the incidence of stunting in South Sulawesi Province by implementing various Bayesian spatial CAR Leroux models with and without covariates included in the model. The results showed that the best model for modeling stunting cases in South Sulawesi Province in 2020 is the Bayesian spatial CAR Leroux model with hyperprior Inverse-Gamma IG (0.5;0.0005) by including the covariates of the percentage of poverty and the percentage of children under five 0-59 months of malnutrition. The percentage of poverty and the percentage of children under five 0-59 months of malnutrition have a positive effect on the incidence of stunting. The higher the percentage of poverty and the percentage of children aged 0-59 months with malnutrition in an area, the higher the risk of stunting in that area. 50% of districts/cities in South Sulawesi Province are in the high-risk category of stunting. Parepare City is the city with the highest Relative Risk (RR) value for stunting, followed by Toraja and Enrekang Regencies. On the other hand, Wajo Regency is the district with the lowest RR, followed by Luwu Timur and Bone Regencies.Keywords: Stunting, Bayesian, spatial CAR, Leroux 
巴耶西安的空间建模,以确定影响南苏拉威西省特技事件的因素
印度尼西亚是一个发育不全的国家。印度尼西亚苏拉威西省是印度尼西亚南部苏拉威西省,其高性能特技的一个省。有关发育不良和致病因素的研究已经进行。然而,这项研究还没有实施空间调节自定义模型。本研究旨在确定影响南苏拉威西省特技表演的因素,通过实施不受欢迎的巴耶西安空间车Leroux模型和将科科拉模型结合起来。研究结果表明,2020年苏拉威西省南苏拉威西发育病例的最佳模型是巴耶西亚的空间车粥样硬化(0.5;0.0005)模型,包括最低的贫困百分比和5 -59个月营养不良的幼儿百分比。贫困率和5 -59个月的幼儿营养不良对发育不良没有积极的影响。一个地区的贫困率和50 -59个月营养不良的幼儿比例越高,发育不良的风险就越大。南苏拉威西省50%的地区/城市处于高难度特技之下。帕雷帕雷镇是最危险的城市,仅次于托拉雅区和内分泌区。相反,Wajo区是RR最低的县,其次是马利路乌东县和骨头。关键词:空间发育迟缓,Bayesian勒鲁的车时,印尼是一个乡村with a high prevalence of迟缓。在印度尼西亚的省份,最引人注目的cases是南苏拉威西省。关于晕车的研究和他们的事业已经完成。但是,这些研究并没有实现这种适应太空autoregreve(汽车)模型。这项研究确定了在南苏拉威西省影响特技的因素,其目的是由各种各样的巴耶西安空间车Leroux模型具有和不包括covariates的模型。最近的推导者指出,2020年苏拉威西省最出色的发育不良cases是巴耶西亚空间的汽车Leroux模型与超历史异常异常的风险和儿童比率在5 -59个月的时间里。在5 -59个月的营养不良中,儿童的一毫一毫的进步对这一特技的影响是积极的。越高的贫困和儿童在一个地区80 -59个月大的营养不良,越高的发育不良风险。南苏拉威西省50%的地区/城市受到最危险的打击因素的影响。Parepare City是一座有着最重要风险的城市,由Toraja和rerecies紧接而来。另一方面,Wajo Regency是一个由lowest RR跟随的地区,由Luwu east和Bone Regencies跟随。双击:特技,巴耶西安,空间车,Leroux
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信