Graph-to-Graph Energy Minimization for Video Object Segmentation

Yuezun Li, Longyin Wen, Ming-Ching Chang, Siwei Lyu
{"title":"Graph-to-Graph Energy Minimization for Video Object Segmentation","authors":"Yuezun Li, Longyin Wen, Ming-Ching Chang, Siwei Lyu","doi":"10.1109/AVSS.2019.8909894","DOIUrl":null,"url":null,"abstract":"We describe a new unsupervised video object segmentation (VOS) method based on the graph-to-graph energy minimization, which focuses on exploiting the mutual bootstrapping information between bottom-up (i.e., using pixel/superpixel attributes) and top-down (i.e., using learned appearance and motion cues) processes in a uni-fiedframework. Specifically, we construct a graph-to-graph energy function to encode the spatial similarities among superpixels (superpixel-graph) and temporal consistency among regions (region-graph). An efficient heuristic iterative algorithm is used to minimize the energy function to get the optimal assignment of superpixel and region labels to complete the VOS task. Experiments on two challenging benchmarks (i.e., SegTrack v2 and DAVIS) show that the proposed method achieves favorable performance against the state-of-the-art unsupervised VOS methods and comparable performance with the state-of-the-art semi-supervised methods.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We describe a new unsupervised video object segmentation (VOS) method based on the graph-to-graph energy minimization, which focuses on exploiting the mutual bootstrapping information between bottom-up (i.e., using pixel/superpixel attributes) and top-down (i.e., using learned appearance and motion cues) processes in a uni-fiedframework. Specifically, we construct a graph-to-graph energy function to encode the spatial similarities among superpixels (superpixel-graph) and temporal consistency among regions (region-graph). An efficient heuristic iterative algorithm is used to minimize the energy function to get the optimal assignment of superpixel and region labels to complete the VOS task. Experiments on two challenging benchmarks (i.e., SegTrack v2 and DAVIS) show that the proposed method achieves favorable performance against the state-of-the-art unsupervised VOS methods and comparable performance with the state-of-the-art semi-supervised methods.
基于图对图能量最小化的视频对象分割
我们描述了一种新的基于图到图能量最小化的无监督视频对象分割(VOS)方法,该方法着重于在统一场框架中利用自下而上(即使用像素/超像素属性)和自上而下(即使用学习的外观和运动线索)过程之间的相互引导信息。具体来说,我们构建了一个图到图的能量函数来编码超像素之间的空间相似性(superpixel-graph)和区域之间的时间一致性(region-graph)。采用一种高效的启发式迭代算法对能量函数进行最小化,得到超像素和区域标签的最优分配,从而完成VOS任务。在两个具有挑战性的基准(即SegTrack v2和DAVIS)上的实验表明,该方法与最先进的无监督VOS方法相比具有良好的性能,并且与最先进的半监督方法具有相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信