Practical Aspects of Forming Training/Test Samples for Convolutional Neural Networks

Y. Tomka, M. Talakh, V. Dvorzhak, O. Ushenko
{"title":"Practical Aspects of Forming Training/Test Samples for Convolutional Neural Networks","authors":"Y. Tomka, M. Talakh, V. Dvorzhak, O. Ushenko","doi":"10.31649/1681-7893-2022-43-1-24-35","DOIUrl":null,"url":null,"abstract":"The most common approaches to assessing the quality of training neural networks in the context of the problem of \"small training sets\" are analyzed. A review of the code implementation of the most universal approaches and ways of extending training/testing samples is carried out. The logic of the work of STN-module is analyzed. It can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps, conditional on the feature map itself, without any extra training supervision or modification to the optimization process.","PeriodicalId":142101,"journal":{"name":"Optoelectronic information-power technologies","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optoelectronic information-power technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31649/1681-7893-2022-43-1-24-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The most common approaches to assessing the quality of training neural networks in the context of the problem of "small training sets" are analyzed. A review of the code implementation of the most universal approaches and ways of extending training/testing samples is carried out. The logic of the work of STN-module is analyzed. It can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps, conditional on the feature map itself, without any extra training supervision or modification to the optimization process.
形成卷积神经网络训练/测试样本的实践方面
分析了在“小训练集”问题背景下评估训练神经网络质量的最常见方法。对最通用的方法和扩展训练/测试样本的方法的代码实现进行审查。分析了stn模块的工作逻辑。它可以插入到现有的卷积架构中,使神经网络能够主动地对特征映射进行空间变换,以特征映射本身为条件,无需任何额外的训练监督或对优化过程进行修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信