N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, K. Takahashi
{"title":"Mechanical effects of copper through-vias in a 3D die-stacked module","authors":"N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, K. Takahashi","doi":"10.1109/ECTC.2002.1008138","DOIUrl":null,"url":null,"abstract":"Mechanical effects of copper through-vias formed in silicon dies in a three dimensional module, in which four bare-dies with copper through-vias are vertically stacked and electrically connected through the copper-vias and metal bumps, were numerically and experimentally studied. To examine the mechanical effects caused by the existence of the copper through-vias in a rigid silicon-chip, a series of stress analyses, related simple mechanical tests, and reliability tests were carried out. All these results show that the copper through-via has unique effects on the stress distribution caused by thermal mismatch and on the interconnection reliability in the 3D die-stacked module. In particular, it was found that the developed micro copper through-via is reliable because the stress distribution due to thermal load is close to the hydrostatic pressure condition, and enhances chip-to-chip interconnection reliability because the copper-via restrains the plastic deformation of a gold bump during temperature cycling.","PeriodicalId":285713,"journal":{"name":"52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2002.1008138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Mechanical effects of copper through-vias formed in silicon dies in a three dimensional module, in which four bare-dies with copper through-vias are vertically stacked and electrically connected through the copper-vias and metal bumps, were numerically and experimentally studied. To examine the mechanical effects caused by the existence of the copper through-vias in a rigid silicon-chip, a series of stress analyses, related simple mechanical tests, and reliability tests were carried out. All these results show that the copper through-via has unique effects on the stress distribution caused by thermal mismatch and on the interconnection reliability in the 3D die-stacked module. In particular, it was found that the developed micro copper through-via is reliable because the stress distribution due to thermal load is close to the hydrostatic pressure condition, and enhances chip-to-chip interconnection reliability because the copper-via restrains the plastic deformation of a gold bump during temperature cycling.