Classifier Ensembles for Credit Card Fraud Detection

J. Novakovic, S. Marković
{"title":"Classifier Ensembles for Credit Card Fraud Detection","authors":"J. Novakovic, S. Marković","doi":"10.1109/IT48810.2020.9070534","DOIUrl":null,"url":null,"abstract":"There is a risk of payment card abuse in e-commerce, so it is important to note those transactions that are took place without the owner's knowledge. We use various predictive models to see how accurate they are in detecting whether a transaction is a normal payment or a fraud. In classification problem, Bagging, AdaBoost, Random forest and Gradient boosting classifier ensembles are used. We chose decision trees as the base classifiers in classifier ensembles because they are very accurate and sensitive to rotation of the feature axes. Consequences of employing different classifier ensembles are monitored. We present comparisons of classifier ensembles with different performance measures.","PeriodicalId":220339,"journal":{"name":"2020 24th International Conference on Information Technology (IT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Conference on Information Technology (IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IT48810.2020.9070534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

There is a risk of payment card abuse in e-commerce, so it is important to note those transactions that are took place without the owner's knowledge. We use various predictive models to see how accurate they are in detecting whether a transaction is a normal payment or a fraud. In classification problem, Bagging, AdaBoost, Random forest and Gradient boosting classifier ensembles are used. We chose decision trees as the base classifiers in classifier ensembles because they are very accurate and sensitive to rotation of the feature axes. Consequences of employing different classifier ensembles are monitored. We present comparisons of classifier ensembles with different performance measures.
信用卡欺诈检测的分类器集成
在电子商务中存在支付卡滥用的风险,因此注意那些在所有者不知情的情况下发生的交易是很重要的。我们使用各种预测模型,看看它们在检测交易是正常支付还是欺诈方面有多准确。在分类问题中,使用了Bagging、AdaBoost、Random forest和Gradient boosting分类器集成。我们选择决策树作为分类器集成中的基本分类器,因为决策树对特征轴的旋转非常准确和敏感。采用不同的分类器集成的后果进行了监测。我们提出了分类器集成与不同的性能指标的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信