Replacement optimization of industrial components subject to technological obsolescence using artificial intelligence

M. Mellal, S. Adjerid, E. Williams
{"title":"Replacement optimization of industrial components subject to technological obsolescence using artificial intelligence","authors":"M. Mellal, S. Adjerid, E. Williams","doi":"10.1109/ICOSC.2017.7958637","DOIUrl":null,"url":null,"abstract":"Nowadays, rapid technological change influences the dependability of industrial components by the phenomenon of “obsolescence.” The technological obsolescence of a unit is characterized by the existence of a new-generation unit possessing identical functionalities, but with improved performances. The industrial firms seek to optimally replace the old-generation units by maximizing the number of replaced items, in order to deal with obsolescence of the plant. This paper presents the applicability of a flexible model for thirty components, using a modern bio-inspired and evolutionary computational algorithm called “Cuckoo Optimization Algorithm (COA).”","PeriodicalId":113395,"journal":{"name":"2017 6th International Conference on Systems and Control (ICSC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2017.7958637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nowadays, rapid technological change influences the dependability of industrial components by the phenomenon of “obsolescence.” The technological obsolescence of a unit is characterized by the existence of a new-generation unit possessing identical functionalities, but with improved performances. The industrial firms seek to optimally replace the old-generation units by maximizing the number of replaced items, in order to deal with obsolescence of the plant. This paper presents the applicability of a flexible model for thirty components, using a modern bio-inspired and evolutionary computational algorithm called “Cuckoo Optimization Algorithm (COA).”
利用人工智能对技术过时的工业部件进行替换优化
如今,快速的技术变革通过“过时”现象影响着工业部件的可靠性。一个装置的技术过时的特点是新一代装置的存在,具有相同的功能,但具有改进的性能。工业企业寻求通过最大化被替换的产品数量来优化替换旧的一代设备,以解决工厂的陈旧问题。本文提出了一个适用于30个组件的灵活模型,使用现代生物启发和进化计算算法“布谷鸟优化算法(COA)”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信