{"title":"Spatio-Spectral Enhancement of Single-Pixel Reconstruction by a Fully Convolutional Neural Network","authors":"Kevin Lozano, L. Galvis, H. Arguello","doi":"10.1109/ColCACI50549.2020.9247903","DOIUrl":null,"url":null,"abstract":"Spectral images (SI) contain a large amount of information, which increases the cost of their collection, storage, and processing. Compressive spectral imaging (CSI) methods allow the reconstruction of that information from a small set of random projections. However, compressed sensing with high spatial-spectral resolution requires expensive sensors. The single-pixel camera is an architecture that provides a low-cost solution for compressive SI acquisition, but with a significant limitation in image resolution. This work proposes a deep learning approach by means of a fully convolutional neural network (FCNN) with the ability to retrieve the spatio-spectral information from a single-pixel reconstruction in order to produce a spatio-spectral enhancement, suitable for applications requiring higher quality and low-cost acquisition systems. Simulations and experimental results show that the trained FCNN with a limited data set improves the quality of the single-pixel reconstruction in up to 20 dB, without requiring additional measurements. The performance of the proposed approach is compared against the traditional method of the single-pixel reconstruction.","PeriodicalId":446750,"journal":{"name":"2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Colombian Conference on Applications of Computational Intelligence (IEEE ColCACI 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ColCACI50549.2020.9247903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Spectral images (SI) contain a large amount of information, which increases the cost of their collection, storage, and processing. Compressive spectral imaging (CSI) methods allow the reconstruction of that information from a small set of random projections. However, compressed sensing with high spatial-spectral resolution requires expensive sensors. The single-pixel camera is an architecture that provides a low-cost solution for compressive SI acquisition, but with a significant limitation in image resolution. This work proposes a deep learning approach by means of a fully convolutional neural network (FCNN) with the ability to retrieve the spatio-spectral information from a single-pixel reconstruction in order to produce a spatio-spectral enhancement, suitable for applications requiring higher quality and low-cost acquisition systems. Simulations and experimental results show that the trained FCNN with a limited data set improves the quality of the single-pixel reconstruction in up to 20 dB, without requiring additional measurements. The performance of the proposed approach is compared against the traditional method of the single-pixel reconstruction.