FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks

Md. Khaledur Rahman, Majedul Haque Sujon, A. Azad
{"title":"FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks","authors":"Md. Khaledur Rahman, Majedul Haque Sujon, A. Azad","doi":"10.1109/IPDPS49936.2021.00034","DOIUrl":null,"url":null,"abstract":"We develop a fused matrix multiplication kernel that unifies sampled dense-dense matrix multiplication and sparsedense matrix multiplication under a single operation called FusedMM. By using user-defined functions, FusedMM can capture almost all computational patterns needed by popular graph embedding and GNN approaches.FusedMM is an order of magnitude faster than its equivalent kernels in Deep Graph Library. The superior performance of FusedMM comes from the low-level vectorized kernels, a suitable load balancing scheme and an efficient utilization of the memory bandwidth. FusedMM can tune its performance using a code generator and perform equally well on Intel, AMD and ARM processors. FusedMM speeds up an end-to-end graph embedding algorithm by up to $28 \\times$ on different processors. The source code is available at https://github.com/HipGraph/FusedMM.","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We develop a fused matrix multiplication kernel that unifies sampled dense-dense matrix multiplication and sparsedense matrix multiplication under a single operation called FusedMM. By using user-defined functions, FusedMM can capture almost all computational patterns needed by popular graph embedding and GNN approaches.FusedMM is an order of magnitude faster than its equivalent kernels in Deep Graph Library. The superior performance of FusedMM comes from the low-level vectorized kernels, a suitable load balancing scheme and an efficient utilization of the memory bandwidth. FusedMM can tune its performance using a code generator and perform equally well on Intel, AMD and ARM processors. FusedMM speeds up an end-to-end graph embedding algorithm by up to $28 \times$ on different processors. The source code is available at https://github.com/HipGraph/FusedMM.
用于图嵌入和图神经网络的统一SDDMM-SpMM核
我们开发了一个融合矩阵乘法核,它将采样密集矩阵乘法和稀疏密集矩阵乘法统一在一个称为FusedMM的操作下。通过使用用户定义函数,FusedMM可以捕获流行的图嵌入和GNN方法所需的几乎所有计算模式。FusedMM比Deep Graph Library中的等效内核快一个数量级。FusedMM的优越性能来自于底层向量化核、合适的负载均衡方案和对内存带宽的有效利用。FusedMM可以使用代码生成器调整其性能,并在英特尔,AMD和ARM处理器上表现同样出色。FusedMM在不同的处理器上将端到端图形嵌入算法的速度提高了28倍。源代码可从https://github.com/HipGraph/FusedMM获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信