Modeling Multi-source Information Diffusion: A Graphical Evolutionary Game Approach

Hong Hu, Yuejiang Li, H. Zhao, Yan Chen
{"title":"Modeling Multi-source Information Diffusion: A Graphical Evolutionary Game Approach","authors":"Hong Hu, Yuejiang Li, H. Zhao, Yan Chen","doi":"10.1109/APSIPAASC47483.2019.9023248","DOIUrl":null,"url":null,"abstract":"Modeling of information diffusion over social networks is of crucial importance to better understand how the avalanche of information overflow affects our social life and economy, thus preventing the detrimental consequences caused by rumors and motivating some beneficial information spreading. However, most model-based works on information diffusion either consider the spreading of one single message or assume different diffusion processes are independent of each other. In real-world scenarios, multi-source correlated information often spreads together, which jointly influences users' decisions. In this paper, we model the multi-source information diffusion process from a graphical evolutionary game perspective. Specifically, we model users' local interactions and strategic decision making, and analyze the evolutionary dynamics of the diffusion processes of correlated information, aiming to investigate the underlying principles dominating the complex multi-source information diffusion. Simulation results on synthetic and Facebook networks are consistent with our theoretical analysis. We also test our proposed model on Weibo user forwarding data and observe a good prediction performance on real-world information spreading process, which demonstrates the effectiveness of the proposed approach.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modeling of information diffusion over social networks is of crucial importance to better understand how the avalanche of information overflow affects our social life and economy, thus preventing the detrimental consequences caused by rumors and motivating some beneficial information spreading. However, most model-based works on information diffusion either consider the spreading of one single message or assume different diffusion processes are independent of each other. In real-world scenarios, multi-source correlated information often spreads together, which jointly influences users' decisions. In this paper, we model the multi-source information diffusion process from a graphical evolutionary game perspective. Specifically, we model users' local interactions and strategic decision making, and analyze the evolutionary dynamics of the diffusion processes of correlated information, aiming to investigate the underlying principles dominating the complex multi-source information diffusion. Simulation results on synthetic and Facebook networks are consistent with our theoretical analysis. We also test our proposed model on Weibo user forwarding data and observe a good prediction performance on real-world information spreading process, which demonstrates the effectiveness of the proposed approach.
多源信息扩散建模:一种图形进化博弈方法
建立信息在社交网络上的扩散模型,对于更好地理解信息雪崩溢出如何影响我们的社会生活和经济,从而防止谣言造成的不良后果,激发一些有益的信息传播具有至关重要的意义。然而,大多数基于模型的信息扩散研究要么考虑单个消息的传播,要么假设不同的扩散过程是相互独立的。在现实场景中,多源相关信息往往会一起传播,共同影响用户的决策。本文从图形进化博弈的角度对多源信息扩散过程进行了建模。具体而言,我们建立了用户局部交互和策略决策模型,并分析了相关信息扩散过程的演化动力学,旨在探讨复杂多源信息扩散的基本原理。在合成网络和Facebook网络上的仿真结果与我们的理论分析一致。我们还在微博用户转发数据上对所提出的模型进行了测试,并观察到对真实信息传播过程的良好预测性能,证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信