Image binarization using iterative partitioning: A global thresholding approach

S. Shaikh, Asis Kumar Maiti, N. Chaki
{"title":"Image binarization using iterative partitioning: A global thresholding approach","authors":"S. Shaikh, Asis Kumar Maiti, N. Chaki","doi":"10.1109/ReTIS.2011.6146882","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for image binarization. This is a modified and improved version of the iterative partition based algorithm proposed in [1]. The proposed method has been compared with other five representative binarization methods including the algorithm proposed in [1]. The USC-SIPI image database has been used for experimental verification purposes. The results of implementation of the algorithms unearth the superiority of the proposed method compared to the other five methods in terms of two quantitative measures, namely, misclassification error and the relative foreground area error.","PeriodicalId":137916,"journal":{"name":"2011 International Conference on Recent Trends in Information Systems","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Recent Trends in Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReTIS.2011.6146882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper proposes a new method for image binarization. This is a modified and improved version of the iterative partition based algorithm proposed in [1]. The proposed method has been compared with other five representative binarization methods including the algorithm proposed in [1]. The USC-SIPI image database has been used for experimental verification purposes. The results of implementation of the algorithms unearth the superiority of the proposed method compared to the other five methods in terms of two quantitative measures, namely, misclassification error and the relative foreground area error.
使用迭代分割的图像二值化:一种全局阈值方法
提出了一种新的图像二值化方法。这是对文献[1]中提出的基于迭代划分算法的改进版。本文提出的方法与文献[1]中提出的算法等五种代表性二值化方法进行了比较。USC-SIPI图像数据库已用于实验验证目的。算法的实施结果表明,该方法在误分类误差和相对前景区域误差两个定量指标上均优于其他五种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信