{"title":"Byte-Level Massively Multilingual Semantic Parsing","authors":"M. Nicosia, Francesco Piccinno","doi":"10.18653/v1/2022.mmnlu-1.3","DOIUrl":null,"url":null,"abstract":"Token free approaches have been successfully applied to a series of word and span level tasks. In this work, we evaluate a byte-level sequence to sequence model (ByT5) on the 51 languages in the MASSIVE multilingual semantic parsing dataset. We examine multiple experimental settings: (i) zero-shot, (ii) full gold data and (iii) zero-shot with synthetic data. By leveraging a state-of-the-art label projection method for machine translated examples, we are able to reduce the gap in exact match to only 5 points with respect to a model trained on gold data from all the languages. We additionally provide insights on the cross-lingual transfer of ByT5 and show how the model compares with respect to mT5 across all parameter sizes.","PeriodicalId":375461,"journal":{"name":"Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.mmnlu-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Token free approaches have been successfully applied to a series of word and span level tasks. In this work, we evaluate a byte-level sequence to sequence model (ByT5) on the 51 languages in the MASSIVE multilingual semantic parsing dataset. We examine multiple experimental settings: (i) zero-shot, (ii) full gold data and (iii) zero-shot with synthetic data. By leveraging a state-of-the-art label projection method for machine translated examples, we are able to reduce the gap in exact match to only 5 points with respect to a model trained on gold data from all the languages. We additionally provide insights on the cross-lingual transfer of ByT5 and show how the model compares with respect to mT5 across all parameter sizes.