A2Text-Net: A Novel Deep Neural Network for Sarcasm Detection

Liyuan Liu, J. Priestley, Yiyun Zhou, H. Ray, Meng Han
{"title":"A2Text-Net: A Novel Deep Neural Network for Sarcasm Detection","authors":"Liyuan Liu, J. Priestley, Yiyun Zhou, H. Ray, Meng Han","doi":"10.1109/CogMI48466.2019.00025","DOIUrl":null,"url":null,"abstract":"Sarcasm is a common form of irony in which users usually express their negative attitudes using contrary words. Predicting sarcasm is an essential part of investigating human social interaction. Improvements in classifying sarcasm have the potential to improve other dimensions of human sentiment (e.g., brand preference, political views). In face-to-face communication, the changing of voice, eye contact, physical position, etc. provides the audience with cues to detect sarcasm. However, detecting sarcasm exclusively with text is particularly challenging, given the lack of these subtle human-centric cues. In this study, we employed a new deep neural network: A2Text-Net to mimic the face-to-face speech, which integrates auxiliary variables such as punctuations, part of speech (POS), numeral, emoji, etc. to increase classification performance. The experiment results provide evidence that our A2Text-Net approach improves classification performance over conventional machine learning and deep learning algorithms.","PeriodicalId":116160,"journal":{"name":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI48466.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Sarcasm is a common form of irony in which users usually express their negative attitudes using contrary words. Predicting sarcasm is an essential part of investigating human social interaction. Improvements in classifying sarcasm have the potential to improve other dimensions of human sentiment (e.g., brand preference, political views). In face-to-face communication, the changing of voice, eye contact, physical position, etc. provides the audience with cues to detect sarcasm. However, detecting sarcasm exclusively with text is particularly challenging, given the lack of these subtle human-centric cues. In this study, we employed a new deep neural network: A2Text-Net to mimic the face-to-face speech, which integrates auxiliary variables such as punctuations, part of speech (POS), numeral, emoji, etc. to increase classification performance. The experiment results provide evidence that our A2Text-Net approach improves classification performance over conventional machine learning and deep learning algorithms.
A2Text-Net:一种用于讽刺语检测的新型深度神经网络
讽刺是讽刺的一种常见形式,使用者通常使用相反的词语来表达他们的消极态度。预测讽刺是研究人类社会互动的重要组成部分。在讽刺分类方面的改进有可能改善人类情感的其他方面(例如,品牌偏好,政治观点)。在面对面的交流中,声音、眼神、身体位置等的变化为听众提供了察觉讽刺的线索。然而,考虑到缺乏这些微妙的以人为中心的线索,仅从文本中检测讽刺尤其具有挑战性。在这项研究中,我们采用了一种新的深度神经网络:A2Text-Net来模拟面对面的语音,该网络集成了标点、词性(POS)、数字、表情符号等辅助变量来提高分类性能。实验结果证明,我们的A2Text-Net方法比传统的机器学习和深度学习算法提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信