Video text recognition using feature compensation as category-dependent feature extraction

M. Mori
{"title":"Video text recognition using feature compensation as category-dependent feature extraction","authors":"M. Mori","doi":"10.1109/ICDAR.2003.1227741","DOIUrl":null,"url":null,"abstract":"When recognizing multiple fonts, geometric features,such as the directional information of strokes, are generallyrobust against deformation but are weak against degradation.This paper describes a category-dependent feature extractionmethod that uses a feature compensation techniqueto overcome this weakness. Our proposed method estimatesthe degree of degradation of an input pattern by comparingthe input pattern and the template of each category. Thisestimation enables us to compensate the degradation in featurevalues. We apply the proposed method to the recognitionof video text suffering from degradation and deformation.Recognition experiments using characters extractedfrom videos show that the proposed method is superior tothe conventional alternatives in resisting degradation.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

When recognizing multiple fonts, geometric features,such as the directional information of strokes, are generallyrobust against deformation but are weak against degradation.This paper describes a category-dependent feature extractionmethod that uses a feature compensation techniqueto overcome this weakness. Our proposed method estimatesthe degree of degradation of an input pattern by comparingthe input pattern and the template of each category. Thisestimation enables us to compensate the degradation in featurevalues. We apply the proposed method to the recognitionof video text suffering from degradation and deformation.Recognition experiments using characters extractedfrom videos show that the proposed method is superior tothe conventional alternatives in resisting degradation.
基于特征补偿的视频文本识别分类相关特征提取
在识别多种字体时,几何特征(如笔画的方向信息)通常对变形具有鲁棒性,但对退化则较弱。本文提出了一种基于分类的特征提取方法,利用特征补偿技术克服了这一缺点。我们提出的方法通过比较输入模式和每个类别的模板来估计输入模式的退化程度。这种估计使我们能够补偿特征值的退化。我们将该方法应用于有退化和变形的视频文本的识别。利用视频中提取的字符进行识别实验,结果表明该方法在抗退化方面优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信