Shimmila Bhowmick, Ayaskanta Panigrahi, Pranjal Protim Borah, P. Kalita, K. Sorathia
{"title":"Investigating the Effectiveness of Locked Dwell Time-based Point and Tap Gesture for Selection of Nail-sized Objects in Dense Virtual Environment","authors":"Shimmila Bhowmick, Ayaskanta Panigrahi, Pranjal Protim Borah, P. Kalita, K. Sorathia","doi":"10.1145/3385959.3422701","DOIUrl":null,"url":null,"abstract":"In immersive VR environments, object selection is an essential interaction. However, current object selection techniques suffer from issues of hand jitter, accuracy, and fatigue, especially to select nail-size objects. Here, we present locked dwell time-based point and tap, a novel object selection technique designed for nail-size object selection in a dense virtual environment. The objects are within arm’s reach. We also compare locked dwell time-based point and tap with magnetic grasp, pinch and raycasting. 40 participants evaluated the effectiveness and efficiency of these techniques. The results found that locked dwell time-based point and tap took significantly less task completion time and error rate. It was also the most preferred and caused least effort among all the techniques. We also measured easy to use, easy to learn and perceived naturalness of the techniques.","PeriodicalId":157249,"journal":{"name":"Proceedings of the 2020 ACM Symposium on Spatial User Interaction","volume":"340 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM Symposium on Spatial User Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385959.3422701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In immersive VR environments, object selection is an essential interaction. However, current object selection techniques suffer from issues of hand jitter, accuracy, and fatigue, especially to select nail-size objects. Here, we present locked dwell time-based point and tap, a novel object selection technique designed for nail-size object selection in a dense virtual environment. The objects are within arm’s reach. We also compare locked dwell time-based point and tap with magnetic grasp, pinch and raycasting. 40 participants evaluated the effectiveness and efficiency of these techniques. The results found that locked dwell time-based point and tap took significantly less task completion time and error rate. It was also the most preferred and caused least effort among all the techniques. We also measured easy to use, easy to learn and perceived naturalness of the techniques.