User identification using raw sensor data from typing on interactive displays

Philipp Mock, Jörg Edelmann, A. Schilling, W. Rosenstiel
{"title":"User identification using raw sensor data from typing on interactive displays","authors":"Philipp Mock, Jörg Edelmann, A. Schilling, W. Rosenstiel","doi":"10.1145/2557500.2557503","DOIUrl":null,"url":null,"abstract":"Personalized soft-keyboards which adapt to a user's individual typing behavior can reduce typing errors on interactive displays. In multi-user scenarios a personalized model has to be loaded for each participant. In this paper we describe a user identification technique that is based on raw sensor data from an optical touch screen. For classification of users we use a multi-class support vector machine that is trained with grayscale images from the optical sensor. Our implementation can identify a specific user from a set of 12 users with an average accuracy of 97.51% after one keystroke. It can be used to automatically select individual typing models during free-text entry. The resulting authentication process is completely implicit. We furthermore describe how the approach can be extended to automatic loading of personal information and settings.","PeriodicalId":287073,"journal":{"name":"Proceedings of the 19th international conference on Intelligent User Interfaces","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2557500.2557503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Personalized soft-keyboards which adapt to a user's individual typing behavior can reduce typing errors on interactive displays. In multi-user scenarios a personalized model has to be loaded for each participant. In this paper we describe a user identification technique that is based on raw sensor data from an optical touch screen. For classification of users we use a multi-class support vector machine that is trained with grayscale images from the optical sensor. Our implementation can identify a specific user from a set of 12 users with an average accuracy of 97.51% after one keystroke. It can be used to automatically select individual typing models during free-text entry. The resulting authentication process is completely implicit. We furthermore describe how the approach can be extended to automatic loading of personal information and settings.
用户识别使用原始传感器数据从输入交互式显示器
适应用户个人打字行为的个性化软键盘可以减少交互式显示器上的打字错误。在多用户场景中,必须为每个参与者加载个性化模型。在本文中,我们描述了一种基于光学触摸屏原始传感器数据的用户识别技术。对于用户的分类,我们使用多类支持向量机,该支持向量机由光学传感器的灰度图像训练而成。我们的实现可以在一次击键后从12个用户中识别出一个特定的用户,平均准确率为97.51%。它可用于在自由文本输入期间自动选择单个输入模型。产生的身份验证过程是完全隐式的。我们进一步描述了如何将该方法扩展到自动加载个人信息和设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信