Heterogeneous Ensemble Models for In-Hospital Mortality Prediction

Mattyws F. Grawe, V. Moreira
{"title":"Heterogeneous Ensemble Models for In-Hospital Mortality Prediction","authors":"Mattyws F. Grawe, V. Moreira","doi":"10.5753/sbcas.2023.229442","DOIUrl":null,"url":null,"abstract":"Electronic Health Records data are rich and contain different types of variables, including structured data (e.g., demographics), free text (e.g., medical notes), and time series data. In this work, we explore the use of these different types of data for the task of in-hospital mortality prediction, which seeks to predict the outcome of death for patients admitted to the hospital. We build base learning models for the different data types and combine them in a heterogeneous ensemble model. In these models, we apply state-of-the-art classification algorithms based on deep learning. Our experiments on a set of 20K ICU patients from the MIMIC-III dataset showed that the ensemble method brings improvements of 3 percentage points, achieving an AUROC of 0.853.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic Health Records data are rich and contain different types of variables, including structured data (e.g., demographics), free text (e.g., medical notes), and time series data. In this work, we explore the use of these different types of data for the task of in-hospital mortality prediction, which seeks to predict the outcome of death for patients admitted to the hospital. We build base learning models for the different data types and combine them in a heterogeneous ensemble model. In these models, we apply state-of-the-art classification algorithms based on deep learning. Our experiments on a set of 20K ICU patients from the MIMIC-III dataset showed that the ensemble method brings improvements of 3 percentage points, achieving an AUROC of 0.853.
院内死亡率预测的异质集合模型
电子健康记录数据丰富,包含不同类型的变量,包括结构化数据(例如人口统计数据)、自由文本(例如医疗记录)和时间序列数据。在这项工作中,我们探索使用这些不同类型的数据进行院内死亡率预测的任务,旨在预测住院患者的死亡结果。我们为不同的数据类型建立基础学习模型,并将它们组合在一个异构集成模型中。在这些模型中,我们应用基于深度学习的最先进的分类算法。我们对来自MIMIC-III数据集的一组20K ICU患者进行的实验表明,集成方法提高了3个百分点,AUROC为0.853。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信