{"title":"Mapping the Spatial Distribution Patterns of Personal Time Spent Based on Trip Purpose","authors":"K. Lwin, Y. Sekimoto","doi":"10.4018/IJAGR.2018040101","DOIUrl":null,"url":null,"abstract":"Understandingthespatialdistributionpatternsofthetimespentbypeoplebasedontheirtrippurpose andothersocialcharacteristicsisimportantforsustainableurbantransportplanning,publicfacility management,socio-economicdevelopment,andothertypesofpolicyplanning.Althoughpersonal tripsurveydataincludestravelbehaviorandothersocialcharacteristics,manyarelackingindetail regardingthespatialdistributionpatternsofindividualmovementsbasedontimespent,typically duetoprivacyissuesanddifficultiesinconvertingnon-spatialsurveydataintoaspatialformat.In thisarticle,geospatially-enabledpersonaltripdata(GeospatialBigData),convertedfromtraditional paper-basedsurveydata,aresubjectedtoaspatialdataminingprocessinordertoexaminethedetailed spatialdistributionpatternsoftimespentbythepublicbasedonvarioustrippurposesandothersocial characteristics,usingtheTokyometropolitanareaasacasestudy. KeywoRDS Geospatial Big Data, Geospatially-Enabled Personal Trip Data, Spatial Distribution Patterns, Time Spent, Trip Purposes","PeriodicalId":368300,"journal":{"name":"Int. J. Appl. Geospat. Res.","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Geospat. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJAGR.2018040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Understandingthespatialdistributionpatternsofthetimespentbypeoplebasedontheirtrippurpose andothersocialcharacteristicsisimportantforsustainableurbantransportplanning,publicfacility management,socio-economicdevelopment,andothertypesofpolicyplanning.Althoughpersonal tripsurveydataincludestravelbehaviorandothersocialcharacteristics,manyarelackingindetail regardingthespatialdistributionpatternsofindividualmovementsbasedontimespent,typically duetoprivacyissuesanddifficultiesinconvertingnon-spatialsurveydataintoaspatialformat.In thisarticle,geospatially-enabledpersonaltripdata(GeospatialBigData),convertedfromtraditional paper-basedsurveydata,aresubjectedtoaspatialdataminingprocessinordertoexaminethedetailed spatialdistributionpatternsoftimespentbythepublicbasedonvarioustrippurposesandothersocial characteristics,usingtheTokyometropolitanareaasacasestudy. KeywoRDS Geospatial Big Data, Geospatially-Enabled Personal Trip Data, Spatial Distribution Patterns, Time Spent, Trip Purposes