Feature extraction of electronic nose for classification of indoor pollution gases based on kernel entropy component analysis

Jia Yan, Shukai Duan, Lidan Wang, Pengfei Jia, Tingwen Huang, F. Tian, Kun Lu
{"title":"Feature extraction of electronic nose for classification of indoor pollution gases based on kernel entropy component analysis","authors":"Jia Yan, Shukai Duan, Lidan Wang, Pengfei Jia, Tingwen Huang, F. Tian, Kun Lu","doi":"10.1504/IJISTA.2017.10005102","DOIUrl":null,"url":null,"abstract":"Feature extraction is important for electronic nose (E-nose), when it is used to classify different gases or odours. A novel feature extraction technique of E-nose based on kernel entropy component analysis (KECA) is presented in this paper. KECA is integrated with Renyi entropy and extracts the features from the kernel Hilbert space by projecting the input dataset onto the kernel principal component analysis (KPCA) axes that preserve the most Renyi entropy. Besides KECA, independent component analysis and KPCA are also used to deal with the original feature matrix of four different indoor pollution gases acquired by E-nose. Experimental results prove that the classification accuracy of KECA is better than other considered techniques.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2017.10005102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature extraction is important for electronic nose (E-nose), when it is used to classify different gases or odours. A novel feature extraction technique of E-nose based on kernel entropy component analysis (KECA) is presented in this paper. KECA is integrated with Renyi entropy and extracts the features from the kernel Hilbert space by projecting the input dataset onto the kernel principal component analysis (KPCA) axes that preserve the most Renyi entropy. Besides KECA, independent component analysis and KPCA are also used to deal with the original feature matrix of four different indoor pollution gases acquired by E-nose. Experimental results prove that the classification accuracy of KECA is better than other considered techniques.
基于核熵分量分析的室内污染气体分类电子鼻特征提取
当电子鼻用于对不同的气体或气味进行分类时,特征提取是非常重要的。提出了一种基于核熵分量分析的电子鼻特征提取方法。kea与Renyi熵相结合,通过将输入数据集投影到保留最多Renyi熵的核主成分分析(KPCA)轴上,从核Hilbert空间中提取特征。除kea外,还利用独立分量分析和KPCA对电子鼻采集的四种不同室内污染气体的原始特征矩阵进行处理。实验结果表明,kea的分类精度优于其他考虑的分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信