{"title":"Revisiting the Arrhenius Equation in Chemical Kinetics to Analyze Kinetics Data for Photochromic Naphthoxazine-spiro-indolines","authors":"J. Hobley","doi":"10.46793/chemn2.1.048h","DOIUrl":null,"url":null,"abstract":"In undergraduate courses, kinetics and thermodynamics are often taught as separate modules. It is because equilibrium data from thermodynamics do not enlighten us about the rate of attainment of equilibrium, which is kinetics. It is true that even if a chemical reaction is thermodynamically favorable, it may never happen due to kinetic considerations. However, this separation of kinetics and thermodynamics is unfortunate in some respects. In this work, the link between chemical kinetics and thermodynamics is explored based on them both being defined by a single potential energy diagram. A common misconception caused by undergraduate courses on chemical kinetics is a claim that the Arrhenius equation is deficient because it does not offer a precise meaning for the pre-exponential term A. Undergraduate courses often go on to proffer more sophisticated theories in the form of collision theory CT and transition state theory TST resulting in the Eyring equation. These latter two theories are required in order to formally show that the pre-exponential term contains information on the entropy requirements of the reaction. In this work, it will be shown that by considering the link between thermodynamics and kinetics it can easily be shown that A was already implicitly linked to the product of the entropy of activation of the reaction and the natural frequency of the reaction. This work makes use of previously published and unpublished results on photochromic naphthoxazine-spiro-indolines to compare different theories.","PeriodicalId":351621,"journal":{"name":"Chemia Naissensis","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemia Naissensis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/chemn2.1.048h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In undergraduate courses, kinetics and thermodynamics are often taught as separate modules. It is because equilibrium data from thermodynamics do not enlighten us about the rate of attainment of equilibrium, which is kinetics. It is true that even if a chemical reaction is thermodynamically favorable, it may never happen due to kinetic considerations. However, this separation of kinetics and thermodynamics is unfortunate in some respects. In this work, the link between chemical kinetics and thermodynamics is explored based on them both being defined by a single potential energy diagram. A common misconception caused by undergraduate courses on chemical kinetics is a claim that the Arrhenius equation is deficient because it does not offer a precise meaning for the pre-exponential term A. Undergraduate courses often go on to proffer more sophisticated theories in the form of collision theory CT and transition state theory TST resulting in the Eyring equation. These latter two theories are required in order to formally show that the pre-exponential term contains information on the entropy requirements of the reaction. In this work, it will be shown that by considering the link between thermodynamics and kinetics it can easily be shown that A was already implicitly linked to the product of the entropy of activation of the reaction and the natural frequency of the reaction. This work makes use of previously published and unpublished results on photochromic naphthoxazine-spiro-indolines to compare different theories.