Positive Structures in Lie Theory

G. Lusztig
{"title":"Positive Structures in Lie Theory","authors":"G. Lusztig","doi":"10.4310/iccm.2020.v8.n1.a4","DOIUrl":null,"url":null,"abstract":"0.1. In late 19th century and early 20th century, a new branch of mathematics was born: Lie theory or the study of Lie groups and Lie algebras (Lie, Killing, E.Cartan, H.Weyl). It has become a central part of mathematics with applications everywhere. More recent developments in Lie theory are as follows. -Analogues of simple Lie groups over any field (including finite fields where they explain most of the finite simple groups): Chevalley 1955; -infinite dimensional versions of the simple Lie algebras/simple Lie groups: Kac and Moody 1967, Moody and Teo 1972; -theory of quantum groups: Drinfeld and Jimbo 1985.","PeriodicalId":415664,"journal":{"name":"Notices of the International Congress of Chinese Mathematicians","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notices of the International Congress of Chinese Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/iccm.2020.v8.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

0.1. In late 19th century and early 20th century, a new branch of mathematics was born: Lie theory or the study of Lie groups and Lie algebras (Lie, Killing, E.Cartan, H.Weyl). It has become a central part of mathematics with applications everywhere. More recent developments in Lie theory are as follows. -Analogues of simple Lie groups over any field (including finite fields where they explain most of the finite simple groups): Chevalley 1955; -infinite dimensional versions of the simple Lie algebras/simple Lie groups: Kac and Moody 1967, Moody and Teo 1972; -theory of quantum groups: Drinfeld and Jimbo 1985.
李论中的积极结构
0.1. 在19世纪末和20世纪初,一个新的数学分支诞生了:李论或李群和李代数的研究(Lie, Killing, E.Cartan, H.Weyl)。它已经成为数学的核心部分,应用无处不在。李论的最新发展如下。-任何域上的单李群的类似物(包括它们解释大多数有限单群的有限域):Chevalley 1955;-单李代数/单李群的无限维版本:Kac和Moody 1967, Moody和Teo 1972;量子群理论:Drinfeld and Jimbo 1985。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信