A client-entropy measure for On-line Signatures

S.G. Salicetti, N. Houmani, B. Dorizzi
{"title":"A client-entropy measure for On-line Signatures","authors":"S.G. Salicetti, N. Houmani, B. Dorizzi","doi":"10.1109/BSYM.2008.4655527","DOIUrl":null,"url":null,"abstract":"In this article, we propose an original way to characterize information content in online signatures through a client-entropy measure based on local density estimation by a hidden Markov model. We show that this measure can be used to categorize signatures in visually coherent classes that can be related to complexity and variability criteria. Besides, the generated categories are coherent across four different databases: BIOMET, MCYT-100, BioSecure data subsets DS2 and DS3. This measure allows a comparison of databases in terms of clientspsila signatures according to their information content.","PeriodicalId":389538,"journal":{"name":"2008 Biometrics Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSYM.2008.4655527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this article, we propose an original way to characterize information content in online signatures through a client-entropy measure based on local density estimation by a hidden Markov model. We show that this measure can be used to categorize signatures in visually coherent classes that can be related to complexity and variability criteria. Besides, the generated categories are coherent across four different databases: BIOMET, MCYT-100, BioSecure data subsets DS2 and DS3. This measure allows a comparison of databases in terms of clientspsila signatures according to their information content.
在线签名的客户端熵度量
在本文中,我们提出了一种新颖的方法,通过基于隐马尔可夫模型的局部密度估计的客户端熵度量来表征在线签名中的信息内容。我们表明,这种度量可以用于在视觉上连贯的类中对签名进行分类,这些类可以与复杂性和可变性标准相关。此外,生成的分类在四个不同的数据库中是一致的:BIOMET、MCYT-100、BioSecure数据子集DS2和DS3。此度量允许根据数据库的信息内容比较数据库的客户机签名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信