H. Kalantarian, C. Sideris, Tuan Le, Christine E. King, M. Sarrafzadeh
{"title":"A framework for probabilistic segmentation of continuous sensor signals","authors":"H. Kalantarian, C. Sideris, Tuan Le, Christine E. King, M. Sarrafzadeh","doi":"10.1109/BSN.2016.7516226","DOIUrl":null,"url":null,"abstract":"Among the major challenges in the realization of practical health monitoring systems is the identification of short-duration events from larger signals. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into discrete windows, which are individually processed using statistical classifiers to recognize various activities or events. In this paper, we propose a probabilistic algorithm for segmenting time-series signals, in which window boundaries are dynamically adjusted when the probability of correct classification is low. Our proposed scheme is benchmarked using an audio-based nutrition-monitoring case-study. Our evaluation shows that algorithm improves the number of correctly classified instances from a baseline of 75% to 94% using the RandomForest classifier.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"775 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Among the major challenges in the realization of practical health monitoring systems is the identification of short-duration events from larger signals. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into discrete windows, which are individually processed using statistical classifiers to recognize various activities or events. In this paper, we propose a probabilistic algorithm for segmenting time-series signals, in which window boundaries are dynamically adjusted when the probability of correct classification is low. Our proposed scheme is benchmarked using an audio-based nutrition-monitoring case-study. Our evaluation shows that algorithm improves the number of correctly classified instances from a baseline of 75% to 94% using the RandomForest classifier.