OCR Performance Prediction Using a Bag of Allographs and Support Vector Regression

T. Bhowmik, T. Paquet, N. Ragot
{"title":"OCR Performance Prediction Using a Bag of Allographs and Support Vector Regression","authors":"T. Bhowmik, T. Paquet, N. Ragot","doi":"10.1109/DAS.2014.72","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a novel and simple technique for prediction of OCR results without using any OCR. The technique uses a bag of allographs to characterize textual components. Then a support vector regression (SVR) technique is used to build a predictor based on the bag of allographs. The performance of the system is evaluated on a corpus of historical documents. The proposed technique produces correct prediction of OCR results on training and test documents within the range of standard deviation of 4.18% and 6.54% respectively. The proposed system has been designed as a tool to assist selection of corpora in libraries and specify the typical performance that can be expected on the selection.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we describe a novel and simple technique for prediction of OCR results without using any OCR. The technique uses a bag of allographs to characterize textual components. Then a support vector regression (SVR) technique is used to build a predictor based on the bag of allographs. The performance of the system is evaluated on a corpus of historical documents. The proposed technique produces correct prediction of OCR results on training and test documents within the range of standard deviation of 4.18% and 6.54% respectively. The proposed system has been designed as a tool to assist selection of corpora in libraries and specify the typical performance that can be expected on the selection.
使用异位图和支持向量回归的OCR性能预测
在本文中,我们描述了一种新颖而简单的技术来预测OCR结果,而不使用任何OCR。该技术使用一组同种异体来表征文本成分。然后利用支持向量回归(SVR)技术建立基于同种异体词包的预测器。系统的性能在历史文档的语料库上进行了评估。该方法对训练文件和测试文件OCR结果的预测准确率分别在4.18%和6.54%的标准差范围内。该系统被设计为辅助图书馆语料库选择的工具,并指定在选择中可以预期的典型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信