The Price of Hierarchical Clustering

Anna Arutyunova, Heiko Röglin
{"title":"The Price of Hierarchical Clustering","authors":"Anna Arutyunova, Heiko Röglin","doi":"10.48550/arXiv.2205.01417","DOIUrl":null,"url":null,"abstract":"Hierarchical Clustering is a popular tool for understanding the hereditary properties of a data set. Such a clustering is actually a sequence of clusterings that starts with the trivial clustering in which every data point forms its own cluster and then successively merges two existing clusters until all points are in the same cluster. A hierarchical clustering achieves an approximation factor of $\\alpha$ if the costs of each $k$-clustering in the hierarchy are at most $\\alpha$ times the costs of an optimal $k$-clustering. We study as cost functions the maximum (discrete) radius of any cluster ($k$-center problem) and the maximum diameter of any cluster ($k$-diameter problem). In general, the optimal clusterings do not form a hierarchy and hence an approximation factor of $1$ cannot be achieved. We call the smallest approximation factor that can be achieved for any instance the price of hierarchy. For the $k$-diameter problem we improve the upper bound on the price of hierarchy to $3+2\\sqrt{2}\\approx 5.83$. Moreover we significantly improve the lower bounds for $k$-center and $k$-diameter, proving a price of hierarchy of exactly $4$ and $3+2\\sqrt{2}$, respectively.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.01417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical Clustering is a popular tool for understanding the hereditary properties of a data set. Such a clustering is actually a sequence of clusterings that starts with the trivial clustering in which every data point forms its own cluster and then successively merges two existing clusters until all points are in the same cluster. A hierarchical clustering achieves an approximation factor of $\alpha$ if the costs of each $k$-clustering in the hierarchy are at most $\alpha$ times the costs of an optimal $k$-clustering. We study as cost functions the maximum (discrete) radius of any cluster ($k$-center problem) and the maximum diameter of any cluster ($k$-diameter problem). In general, the optimal clusterings do not form a hierarchy and hence an approximation factor of $1$ cannot be achieved. We call the smallest approximation factor that can be achieved for any instance the price of hierarchy. For the $k$-diameter problem we improve the upper bound on the price of hierarchy to $3+2\sqrt{2}\approx 5.83$. Moreover we significantly improve the lower bounds for $k$-center and $k$-diameter, proving a price of hierarchy of exactly $4$ and $3+2\sqrt{2}$, respectively.
层次聚类的代价
分层聚类是理解数据集遗传特性的一种流行工具。这样的聚类实际上是一系列的聚类,从琐碎聚类开始,每个数据点形成自己的簇,然后依次合并两个现有的簇,直到所有的点都在同一个簇中。如果层次结构中每个$k$ -聚类的成本最多是最优$k$ -聚类成本的$\alpha$倍,则分层聚类的近似因子为$\alpha$。我们研究了任意簇的最大(离散)半径($k$ -center问题)和任意簇的最大直径($k$ -diameter问题)作为代价函数。一般来说,最优聚类不形成层次结构,因此不能达到近似因子$1$。我们把任何情况下所能达到的最小近似因子称为层次价格。对于$k$ -直径问题,我们将层次价格的上界改进为$3+2\sqrt{2}\approx 5.83$。此外,我们显著改进了$k$ -center和$k$ -diameter的下界,证明了层次价格分别为$4$和$3+2\sqrt{2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信