[POSTER] Exploiting Photogrammetric Targets for Industrial AR

Hemal Naik, Y. Oyamada, P. Keitler, Nassir Navab
{"title":"[POSTER] Exploiting Photogrammetric Targets for Industrial AR","authors":"Hemal Naik, Y. Oyamada, P. Keitler, Nassir Navab","doi":"10.1109/ISMAR.2015.42","DOIUrl":null,"url":null,"abstract":"In this work, we encourage the idea of using Photogrammetric targets for object tracking in Industrial Augmented Reality (IAR). Photogrammetric targets, especially uncoded circular targets, are widely used in the industry to perform 3D surface measurements. Therefore, an AR solution based on the uncoded circular targets can improve the work flow integration by reusing existing targets and saving time. These circular targets do not have coded patterns to establish unique 2D-3D correspondences between the targets on the model and their image projections. We solve this particular problem of 2D-3D correspondence of non-coplanar circular targets from a single image. We introduce a Conic pair descriptor, which computes the Eucledian invariants from circular targets in the model space and in the image space. A three stage method is used to compare the descriptors and compute the correspondences with up to 100% precision and 89% recall rates. We are able to achieve tracking performance of 3 FPS (2560x1920 pix) to 8 FPS (640×480 pix) depending on the camera resolution and the targets present in the scene.","PeriodicalId":240196,"journal":{"name":"2015 IEEE International Symposium on Mixed and Augmented Reality","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2015.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we encourage the idea of using Photogrammetric targets for object tracking in Industrial Augmented Reality (IAR). Photogrammetric targets, especially uncoded circular targets, are widely used in the industry to perform 3D surface measurements. Therefore, an AR solution based on the uncoded circular targets can improve the work flow integration by reusing existing targets and saving time. These circular targets do not have coded patterns to establish unique 2D-3D correspondences between the targets on the model and their image projections. We solve this particular problem of 2D-3D correspondence of non-coplanar circular targets from a single image. We introduce a Conic pair descriptor, which computes the Eucledian invariants from circular targets in the model space and in the image space. A three stage method is used to compare the descriptors and compute the correspondences with up to 100% precision and 89% recall rates. We are able to achieve tracking performance of 3 FPS (2560x1920 pix) to 8 FPS (640×480 pix) depending on the camera resolution and the targets present in the scene.
[海报]利用工业AR的摄影测量目标
在这项工作中,我们鼓励在工业增强现实(IAR)中使用摄影测量目标进行对象跟踪的想法。摄影测量目标,特别是未编码的圆形目标,在工业上广泛应用于三维表面测量。因此,基于未编码圆形目标的AR解决方案可以通过重用现有目标和节省时间来改善工作流集成。这些圆形目标没有编码模式,无法在模型上的目标与其图像投影之间建立独特的2D-3D对应关系。我们从单幅图像中解决了非共面圆形目标的2D-3D对应问题。我们引入了一个圆锥对描述子,它从模型空间和图像空间的圆形目标计算欧几里德不变量。采用三阶段方法对描述符进行比较并计算对应关系,准确率高达100%,召回率高达89%。我们能够实现3 FPS (2560x1920像素)到8 FPS (640×480像素)的跟踪性能,具体取决于相机分辨率和场景中存在的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信