No-reference Image Semantic Quality Approach using Neural Network

S. Ouni, E. Zagrouba, M. Chambah, M. Herbin
{"title":"No-reference Image Semantic Quality Approach using Neural Network","authors":"S. Ouni, E. Zagrouba, M. Chambah, M. Herbin","doi":"10.1109/ISSPIT.2011.6151543","DOIUrl":null,"url":null,"abstract":"Assessment for image quality traditionally needs its original image as a reference but the most of time it is not the case. So, No-Reference (NR) Image Quality Assessment (IQA) seeks to assign quality scores that are consistent with human perception but without an explicit comparison with the reference image. Unfortunately, the field of NR IQA has been largely unexplored. This paper presents a new NR Image Semantic Quality Approach (NR-ISQA) that employs adaptive Neural Networks (NN) to assess the semantic quality of image color. This NN measures the quality of an image by predicting the mean opinion score (MOS) of human observer, using a set of proposed key features especially to describe color. This challenging issues aim at emulating judgment and replacing very complex and time-consuming subjective quality assessment. Two variants of our approach are proposed: the direct and the progressive of the overall quality image. The results show the performances of the proposed approach compared with the human performances.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Assessment for image quality traditionally needs its original image as a reference but the most of time it is not the case. So, No-Reference (NR) Image Quality Assessment (IQA) seeks to assign quality scores that are consistent with human perception but without an explicit comparison with the reference image. Unfortunately, the field of NR IQA has been largely unexplored. This paper presents a new NR Image Semantic Quality Approach (NR-ISQA) that employs adaptive Neural Networks (NN) to assess the semantic quality of image color. This NN measures the quality of an image by predicting the mean opinion score (MOS) of human observer, using a set of proposed key features especially to describe color. This challenging issues aim at emulating judgment and replacing very complex and time-consuming subjective quality assessment. Two variants of our approach are proposed: the direct and the progressive of the overall quality image. The results show the performances of the proposed approach compared with the human performances.
基于神经网络的无参考图像语义质量方法
传统的图像质量评估需要原始图像作为参考,但大多数情况下并非如此。因此,无参考(NR)图像质量评估(IQA)寻求分配与人类感知一致的质量分数,但没有与参考图像进行明确的比较。不幸的是,NR IQA领域在很大程度上尚未被探索。本文提出了一种新的NR图像语义质量方法(NR- isqa),该方法采用自适应神经网络(NN)来评估图像颜色的语义质量。该神经网络通过预测人类观察者的平均意见分数(MOS)来衡量图像的质量,使用一组提出的关键特征来描述颜色。这个具有挑战性的问题旨在模拟判断,取代非常复杂和耗时的主观质量评估。我们的方法提出了两种变体:直接和渐进的整体质量图像。结果表明,该方法的性能与人类的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信