Universal Anderson localization in one-dimensional unitary maps

I. Vakulchyk, S. Flach
{"title":"Universal Anderson localization in one-dimensional unitary maps","authors":"I. Vakulchyk, S. Flach","doi":"10.1063/5.0141808","DOIUrl":null,"url":null,"abstract":"We study Anderson localization in discrete-time quantum map dynamics in one dimension with nearest-neighbor hopping strength θ and quasienergies located on the unit circle. We demonstrate that strong disorder in a local phase field yields a uniform spectrum gaplessly occupying the entire unit circle. The resulting eigenstates are exponentially localized. Remarkably this Anderson localization is universal as all eigenstates have one and the same localization length Lloc. We present an exact theory for the calculation of the localization length as a function of the hopping, 1/Lloc=|ln⁡(|sin⁡(θ)|)|, which is tunable between zero and infinity by variation of the hopping θ.","PeriodicalId":340975,"journal":{"name":"Chaos: An Interdisciplinary Journal of Nonlinear Science","volume":"18 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos: An Interdisciplinary Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0141808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study Anderson localization in discrete-time quantum map dynamics in one dimension with nearest-neighbor hopping strength θ and quasienergies located on the unit circle. We demonstrate that strong disorder in a local phase field yields a uniform spectrum gaplessly occupying the entire unit circle. The resulting eigenstates are exponentially localized. Remarkably this Anderson localization is universal as all eigenstates have one and the same localization length Lloc. We present an exact theory for the calculation of the localization length as a function of the hopping, 1/Lloc=|ln⁡(|sin⁡(θ)|)|, which is tunable between zero and infinity by variation of the hopping θ.
一维酉图中的通用安德森定位
研究了一维离散时间量子映射动力学中最近邻跳变强度θ和准能量位于单位圆上的安德森局域化问题。我们证明了局域相场的强无序产生了均匀的无间隙谱,占据了整个单位圆。得到的特征态是指数局域化的。值得注意的是,这个安德森局域化是普遍的,因为所有的特征态都有一个相同的局域化长度Lloc。我们提出了一个精确的计算局域化长度作为跳波函数的理论,1/Lloc=|ln (|) sin (θ)|)|,它可以通过跳波θ的变化在零和无穷之间进行调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信