Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

K. Bringmann, Philip Wellnitz
{"title":"Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars","authors":"K. Bringmann, Philip Wellnitz","doi":"10.4230/LIPIcs.CPM.2017.12","DOIUrl":null,"url":null,"abstract":"Tree-adjoining grammars are a generalization of context-free grammars that are well suited to model human languages and are thus popular in computational linguistics. In the tree-adjoining grammar recognition problem, given a grammar $\\Gamma$ and a string $s$ of length $n$, the task is to decide whether $s$ can be obtained from $\\Gamma$. Rajasekaran and Yooseph's parser (JCSS'98) solves this problem in time $O(n^{2\\omega})$, where $\\omega < 2.373$ is the matrix multiplication exponent. The best algorithms avoiding fast matrix multiplication take time $O(n^6)$. \nThe first evidence for hardness was given by Satta (J. Comp. Linguist.'94): For a more general parsing problem, any algorithm that avoids fast matrix multiplication and is significantly faster than $O(|\\Gamma| n^6)$ in the case of $|\\Gamma| = \\Theta(n^{12})$ would imply a breakthrough for Boolean matrix multiplication. \nFollowing an approach by Abboud et al. (FOCS'15) for context-free grammar recognition, in this paper we resolve many of the disadvantages of the previous lower bound. We show that, even on constant-size grammars, any improvement on Rajasekaran and Yooseph's parser would imply a breakthrough for the $k$-Clique problem. This establishes tree-adjoining grammar parsing as a practically relevant problem with the unusual running time of $n^{2\\omega}$, up to lower order factors.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Tree-adjoining grammars are a generalization of context-free grammars that are well suited to model human languages and are thus popular in computational linguistics. In the tree-adjoining grammar recognition problem, given a grammar $\Gamma$ and a string $s$ of length $n$, the task is to decide whether $s$ can be obtained from $\Gamma$. Rajasekaran and Yooseph's parser (JCSS'98) solves this problem in time $O(n^{2\omega})$, where $\omega < 2.373$ is the matrix multiplication exponent. The best algorithms avoiding fast matrix multiplication take time $O(n^6)$. The first evidence for hardness was given by Satta (J. Comp. Linguist.'94): For a more general parsing problem, any algorithm that avoids fast matrix multiplication and is significantly faster than $O(|\Gamma| n^6)$ in the case of $|\Gamma| = \Theta(n^{12})$ would imply a breakthrough for Boolean matrix multiplication. Following an approach by Abboud et al. (FOCS'15) for context-free grammar recognition, in this paper we resolve many of the disadvantages of the previous lower bound. We show that, even on constant-size grammars, any improvement on Rajasekaran and Yooseph's parser would imply a breakthrough for the $k$-Clique problem. This establishes tree-adjoining grammar parsing as a practically relevant problem with the unusual running time of $n^{2\omega}$, up to lower order factors.
解析树相邻语法的基于团的下界
树相邻语法是上下文无关语法的泛化,非常适合建模人类语言,因此在计算语言学中很流行。在树相邻语法识别问题中,给定一个语法$\Gamma$和一个长度为$n$的字符串$s$,任务是确定$s$是否可以从$\Gamma$中获得。Rajasekaran和yusseph的解析器(JCSS'98)及时解决了这个问题$O(n^{2\omega})$,其中$\omega < 2.373$是矩阵乘法指数。避免快速矩阵乘法的最佳算法需要时间$O(n^6)$。硬度的第一个证据是由Satta (J. Comp. Linguist. 1994)给出的:对于更一般的解析问题,任何避免快速矩阵乘法并且在$|\Gamma| = \Theta(n^{12})$的情况下比$O(|\Gamma| n^6)$快得多的算法都意味着布尔矩阵乘法的突破。遵循Abboud等人(FOCS'15)的上下文无关语法识别方法,在本文中,我们解决了以前下界的许多缺点。我们表明,即使在常量大小的语法上,对Rajasekaran和yusseph的解析器的任何改进都意味着$k$ -Clique问题的突破。这使得树相邻语法解析成为与$n^{2\omega}$异常运行时间相关的实际问题,直至低阶因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信