2-D DOA Estimation Based on Rectangular Generalized Minimum Redundancy Array via Partial Grid Covariance Vector Sparse Reconstruction

Wang Geng, Chen Changxiao, He Yi, Feng Mingyue, Ying Jiang, R. Zhao
{"title":"2-D DOA Estimation Based on Rectangular Generalized Minimum Redundancy Array via Partial Grid Covariance Vector Sparse Reconstruction","authors":"Wang Geng, Chen Changxiao, He Yi, Feng Mingyue, Ying Jiang, R. Zhao","doi":"10.1109/ICSP51882.2021.9408984","DOIUrl":null,"url":null,"abstract":"In this paper, a novel rectangular sparse array with hole-free difference co-arrays and low coupling effect is proposed, while a sparse reconstruction algorithm of partial grid is also proposed for 2-D DOA estimation. Firstly, the nested Toeplitz characteristic of covariance matrix of rectangular uniform array is analysed and the nested Toeplitz covariance matrix is estimated. Based on the precisely estimated covariance matrix, we establish the sparse representation model of covariance vector and achieve 2-D DOA estimation by proposed partial grid covariance vector sparse reconstruction (PGCVSR). Simulation results demonstrate that our proposed algorithm can achieve superior 2-D DOA estimation performance and high estimation accuracy.","PeriodicalId":117159,"journal":{"name":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP51882.2021.9408984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel rectangular sparse array with hole-free difference co-arrays and low coupling effect is proposed, while a sparse reconstruction algorithm of partial grid is also proposed for 2-D DOA estimation. Firstly, the nested Toeplitz characteristic of covariance matrix of rectangular uniform array is analysed and the nested Toeplitz covariance matrix is estimated. Based on the precisely estimated covariance matrix, we establish the sparse representation model of covariance vector and achieve 2-D DOA estimation by proposed partial grid covariance vector sparse reconstruction (PGCVSR). Simulation results demonstrate that our proposed algorithm can achieve superior 2-D DOA estimation performance and high estimation accuracy.
基于矩形广义最小冗余阵列的局部网格协方差向量稀疏重构二维DOA估计
本文提出了一种具有无空穴差分共阵和低耦合效应的矩形稀疏阵列,并提出了一种用于二维DOA估计的局部网格稀疏重建算法。首先分析了矩形均匀阵列协方差矩阵的嵌套Toeplitz特性,并对嵌套Toeplitz协方差矩阵进行了估计。基于精确估计的协方差矩阵,建立了协方差向量的稀疏表示模型,并通过提出的部分网格协方差向量稀疏重建(PGCVSR)实现了二维DOA估计。仿真结果表明,该算法具有较好的二维DOA估计性能和较高的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信