Sort-based query-adaptive loading of R-trees

Daniar Achakeev, B. Seeger, P. Widmayer
{"title":"Sort-based query-adaptive loading of R-trees","authors":"Daniar Achakeev, B. Seeger, P. Widmayer","doi":"10.1145/2396761.2398577","DOIUrl":null,"url":null,"abstract":"Bulk-loading of R-trees has been an important problem in academia and industry for more than twenty years. Current algorithms create R-trees without any information about the expected query profile. However, query profiles are extremely useful for the design of efficient indexes. In this paper, we address this deficiency and present query-adaptive algorithms for building R-trees optimally designed for a given query profile. Since optimal R-tree loading is NP-hard (even without tuning the structure to a query profile), we provide efficient, easy to implement heuristics. Our sort-based algorithms for query-adaptive loading consist of two steps: First, sorting orders are identified resulting in better R-trees than those obtained from standard space-filling curves. Second, for a given sorting order, we propose a dynamic programming algorithm for generating R-trees in linear runtime. Our experimental results confirm that our algorithms generally create significantly better R-trees than the ones obtained from standard sort-based loading algorithms, even when the query profile is unknown.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"422 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Bulk-loading of R-trees has been an important problem in academia and industry for more than twenty years. Current algorithms create R-trees without any information about the expected query profile. However, query profiles are extremely useful for the design of efficient indexes. In this paper, we address this deficiency and present query-adaptive algorithms for building R-trees optimally designed for a given query profile. Since optimal R-tree loading is NP-hard (even without tuning the structure to a query profile), we provide efficient, easy to implement heuristics. Our sort-based algorithms for query-adaptive loading consist of two steps: First, sorting orders are identified resulting in better R-trees than those obtained from standard space-filling curves. Second, for a given sorting order, we propose a dynamic programming algorithm for generating R-trees in linear runtime. Our experimental results confirm that our algorithms generally create significantly better R-trees than the ones obtained from standard sort-based loading algorithms, even when the query profile is unknown.
基于排序的查询自适应r树加载
二十多年来,r树的批量加载一直是学术界和工业界的一个重要问题。当前的算法创建r树时没有任何关于预期查询配置文件的信息。然而,查询概要文件对于设计高效索引非常有用。在本文中,我们解决了这一不足,并提出了针对给定查询配置文件优化设计的用于构建r树的查询自适应算法。由于最优r树加载是np困难的(即使没有将结构调优到查询配置文件),因此我们提供了高效、易于实现的启发式方法。我们基于排序的查询自适应加载算法包括两个步骤:首先,确定排序顺序,得到比标准空间填充曲线得到的r树更好的r树。其次,对于给定的排序顺序,我们提出了一种在线性运行时生成r树的动态规划算法。我们的实验结果证实,即使在查询概要文件未知的情况下,我们的算法通常也比标准的基于排序的加载算法创建的r树要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信