Asset Price Dynamics with Limited Attention

T. Hendershott, A. Menkveld, Rémy Praz, Mark S. Seasholes
{"title":"Asset Price Dynamics with Limited Attention","authors":"T. Hendershott, A. Menkveld, Rémy Praz, Mark S. Seasholes","doi":"10.2139/ssrn.1651098","DOIUrl":null,"url":null,"abstract":"\n We identify long-lived pricing errors through a model in which inattentive investors arrive stochastically to trade. The model’s parameters are structurally estimated using daily NYSE market-maker inventories, retail order flows, and prices. The estimated model fits empirical variances, autocorrelations, and cross-autocorrelations among our three data series from daily to monthly frequencies. Pricing errors for the typical NYSE stock have a standard deviation of 3.2 percentage points and a half-life of 6.2 weeks. These pricing errors account for 9.4$\\%$, 7.0$\\%$, and 4.5$\\%$ of the respective daily, monthly, and quarterly idiosyncratic return variances.","PeriodicalId":307765,"journal":{"name":"Asset Pricing 6","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asset Pricing 6","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1651098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

We identify long-lived pricing errors through a model in which inattentive investors arrive stochastically to trade. The model’s parameters are structurally estimated using daily NYSE market-maker inventories, retail order flows, and prices. The estimated model fits empirical variances, autocorrelations, and cross-autocorrelations among our three data series from daily to monthly frequencies. Pricing errors for the typical NYSE stock have a standard deviation of 3.2 percentage points and a half-life of 6.2 weeks. These pricing errors account for 9.4$\%$, 7.0$\%$, and 4.5$\%$ of the respective daily, monthly, and quarterly idiosyncratic return variances.
关注有限的资产价格动态
我们通过一个模型来识别长期存在的定价错误,在这个模型中,粗心的投资者随机进入交易。该模型的参数使用纽约证券交易所每日做市商库存,零售订单流量和价格进行结构估计。估计模型拟合经验方差、自相关和交叉自相关我们的三个数据系列从每日到每月的频率。纽交所股票的典型定价误差标准偏差为3.2个百分点,半衰期为6.2周。这些定价错误分别占每日、每月和季度特质回报方差的9.4%、7.0%和4.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信