A Bayesian Test for Comparing Classifier Errors

E. Olivetti, Dirk Bernhardt-Walther
{"title":"A Bayesian Test for Comparing Classifier Errors","authors":"E. Olivetti, Dirk Bernhardt-Walther","doi":"10.1109/PRNI.2015.11","DOIUrl":null,"url":null,"abstract":"Multi-class classification algorithms have become an important tool for the analysis of neuroimaging data. Classification errors contain potentially important information that often goes unreported. It is therefore desirable to quantitatively compare patterns of errors between different experimental conditions. Here we present a Bayesian test that is based on comparing evidence in favor of two competing hypotheses, one stating dependence and one stating independence of two given error patterns. We derive analytical solutions for the likelihoods of both hypotheses. We compare the results from our new test with two other methods of comparing error patterns using data from an fMRI experiment and we substantiate reasons for adopting our proposal and for future work.","PeriodicalId":380902,"journal":{"name":"2015 International Workshop on Pattern Recognition in NeuroImaging","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-class classification algorithms have become an important tool for the analysis of neuroimaging data. Classification errors contain potentially important information that often goes unreported. It is therefore desirable to quantitatively compare patterns of errors between different experimental conditions. Here we present a Bayesian test that is based on comparing evidence in favor of two competing hypotheses, one stating dependence and one stating independence of two given error patterns. We derive analytical solutions for the likelihoods of both hypotheses. We compare the results from our new test with two other methods of comparing error patterns using data from an fMRI experiment and we substantiate reasons for adopting our proposal and for future work.
比较分类器误差的贝叶斯检验
多类分类算法已成为神经影像数据分析的重要工具。分类错误包含潜在的重要信息,而这些信息往往没有被报告。因此,需要定量地比较不同实验条件下的误差模式。在这里,我们提出了一个贝叶斯检验,该检验基于比较证据,支持两个相互竞争的假设,一个陈述依赖,一个陈述独立于两个给定的错误模式。我们推导出两种假设可能性的解析解。我们将新测试的结果与另外两种使用功能磁共振成像实验数据比较误差模式的方法进行了比较,并为采用我们的建议和未来的工作提出了理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信