Linear and non-linear montecarlo approximations of analog joint source-channel coding under generic probability distributions

F. Davoli, M. Mongelli
{"title":"Linear and non-linear montecarlo approximations of analog joint source-channel coding under generic probability distributions","authors":"F. Davoli, M. Mongelli","doi":"10.1109/EMTC.2014.6996642","DOIUrl":null,"url":null,"abstract":"A distributed estimation setting is considered, where a number of sensors transmit their observations of a physical phenomenon, described by one or more random variables, to a sink over noisy communication channels. The goal is to minimize a quadratic distortion measure (Minimum Mean Square Error - MMSE) under a global power constraint on the sensors' transmissions. Both linear MMSE encoders and decoders, parametrically optimized in encoders' gains, and non-linear parametric functional approximators (neural networks) are investigated and numerically compared, highlighting subtle differences in sensitivity and achievable performance.","PeriodicalId":178778,"journal":{"name":"2014 Euro Med Telco Conference (EMTC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Euro Med Telco Conference (EMTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMTC.2014.6996642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A distributed estimation setting is considered, where a number of sensors transmit their observations of a physical phenomenon, described by one or more random variables, to a sink over noisy communication channels. The goal is to minimize a quadratic distortion measure (Minimum Mean Square Error - MMSE) under a global power constraint on the sensors' transmissions. Both linear MMSE encoders and decoders, parametrically optimized in encoders' gains, and non-linear parametric functional approximators (neural networks) are investigated and numerically compared, highlighting subtle differences in sensitivity and achievable performance.
一般概率分布下模拟联合信源信道编码的线性和非线性蒙特卡罗近似
考虑分布式估计设置,其中许多传感器通过噪声通信信道将它们对由一个或多个随机变量描述的物理现象的观测传输到接收器。目标是在传感器传输的全局功率约束下最小化二次失真测量(最小均方误差- MMSE)。研究了线性MMSE编码器和解码器、编码器增益参数优化和非线性参数函数逼近器(神经网络),并进行了数值比较,突出了灵敏度和可实现性能的细微差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信