Repair of DNA double-strand breaks in mitochondria: Implications in mitochondrial genome maintenance

Sumedha Dahal, S. Tadi, R. Sebastian, S. Raghavan
{"title":"Repair of DNA double-strand breaks in mitochondria: Implications in mitochondrial genome maintenance","authors":"Sumedha Dahal, S. Tadi, R. Sebastian, S. Raghavan","doi":"10.18143/JWMS_V2I2_1998","DOIUrl":null,"url":null,"abstract":"Mitochondrial DNA (mtDNA) is frequently exposed to oxidative damage compared to nuclear DNA. mtDNA deletions are associated with mitochondrial disorders. Deletions identified in humans are flanked by short direct repeats; however, mechanism of DNA rearrangements is yet to be elucidated. Besides maintenance of genomic stability in mitochondria is poorly understood.  Here, we investigate the mechanisms of DSB repair in mitochondria. While classical-NHEJ was undetectable, microhomology mediated endjoining (MMEJ) efficiently repaired DSBs in mitochondria. Immunoblotting, immunoprecipitation and other assays suggest the involvement of CtIP, FEN1, MRE11 and PARP1 in mitochondrial MMEJ. Knockdown experiments demonstrated that DNA LIGASE III, but not LIGASE IV or LIGASE I, is primarily responsible for final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ and its functions in deletions and in many human mitochondrial disorders. Further, we show that HR mediated repair is more efficient in mitochondria of testes as compared to brain, kidney and spleen. Interestingly, sequence analyses revealed a predominant reciprocal exchange mechanism, while 35% consisted of gene conversion. Colocalization and immunoblotting studies revealed the role of MRN complex in HR mediated repair in mitochondria. These observations highlight the importance of HR in mitochondrial genome maintenance.","PeriodicalId":266249,"journal":{"name":"Journal of World Mitochondria Society","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of World Mitochondria Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18143/JWMS_V2I2_1998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial DNA (mtDNA) is frequently exposed to oxidative damage compared to nuclear DNA. mtDNA deletions are associated with mitochondrial disorders. Deletions identified in humans are flanked by short direct repeats; however, mechanism of DNA rearrangements is yet to be elucidated. Besides maintenance of genomic stability in mitochondria is poorly understood.  Here, we investigate the mechanisms of DSB repair in mitochondria. While classical-NHEJ was undetectable, microhomology mediated endjoining (MMEJ) efficiently repaired DSBs in mitochondria. Immunoblotting, immunoprecipitation and other assays suggest the involvement of CtIP, FEN1, MRE11 and PARP1 in mitochondrial MMEJ. Knockdown experiments demonstrated that DNA LIGASE III, but not LIGASE IV or LIGASE I, is primarily responsible for final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ and its functions in deletions and in many human mitochondrial disorders. Further, we show that HR mediated repair is more efficient in mitochondria of testes as compared to brain, kidney and spleen. Interestingly, sequence analyses revealed a predominant reciprocal exchange mechanism, while 35% consisted of gene conversion. Colocalization and immunoblotting studies revealed the role of MRN complex in HR mediated repair in mitochondria. These observations highlight the importance of HR in mitochondrial genome maintenance.
线粒体DNA双链断裂的修复:线粒体基因组维持的意义
与核DNA相比,线粒体DNA (mtDNA)经常受到氧化损伤。线粒体dna缺失与线粒体疾病有关。在人类中发现的缺失两侧是短的直接重复;然而,DNA重排的机制尚不清楚。此外,线粒体中基因组稳定性的维持尚不清楚。在这里,我们研究线粒体中DSB修复的机制。虽然classic - nhej检测不到,但微同源介导的末端连接(microhomology mediated endjoining, MMEJ)能有效修复线粒体中的dsb。免疫印迹、免疫沉淀等检测提示CtIP、FEN1、MRE11和PARP1参与线粒体MMEJ。敲低实验表明,DNA LIGASE III,而不是LIGASE IV或LIGASE I,主要负责线粒体MMEJ过程中dsb的最终封闭。这些观察结果强调了MMEJ的核心作用及其在缺失和许多人类线粒体疾病中的功能。此外,我们发现与脑、肾和脾相比,HR介导的修复在睾丸线粒体中更有效。有趣的是,序列分析显示了主要的互惠交换机制,而35%由基因转换组成。共定位和免疫印迹研究揭示了MRN复合物在HR介导的线粒体修复中的作用。这些观察结果强调了HR在线粒体基因组维持中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信