Improving the recovery of principal components with semi-deterministic random projections

Keegan Kang, G. Hooker
{"title":"Improving the recovery of principal components with semi-deterministic random projections","authors":"Keegan Kang, G. Hooker","doi":"10.1109/CISS.2016.7460570","DOIUrl":null,"url":null,"abstract":"Random projection is a technique which was first used for data compression, by using a matrix with random variables to map a high dimensional vector to a lower dimensional one. The lower dimensional vector preserves certain properties of the higher dimensional vector, up to a certain degree of accuracy. However, random projections can also be used for matrix decompositions and factorizations, described in [1]. We propose a new structure of random projections, and apply this to the method of recovering principal components, building upon the work of Anaraki and Hughes [2]. Our extension results in a better accuracy in recovering principal components, as well as a substantial saving in storage space. Experiments have been conducted on both artificial data and on the MNIST dataset to demonstrate our results.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Random projection is a technique which was first used for data compression, by using a matrix with random variables to map a high dimensional vector to a lower dimensional one. The lower dimensional vector preserves certain properties of the higher dimensional vector, up to a certain degree of accuracy. However, random projections can also be used for matrix decompositions and factorizations, described in [1]. We propose a new structure of random projections, and apply this to the method of recovering principal components, building upon the work of Anaraki and Hughes [2]. Our extension results in a better accuracy in recovering principal components, as well as a substantial saving in storage space. Experiments have been conducted on both artificial data and on the MNIST dataset to demonstrate our results.
利用半确定性随机投影提高主成分的恢复
随机投影是一种首先用于数据压缩的技术,通过使用随机变量矩阵将高维向量映射到低维向量。低维向量保留了高维向量的某些性质,在一定程度上保持了精度。然而,随机投影也可以用于矩阵分解和因子分解,如[1]所述。基于Anaraki和Hughes[2]的工作,我们提出了一种新的随机投影结构,并将其应用于恢复主成分的方法。我们的扩展结果在恢复主成分更好的准确性,以及在存储空间的大量节省。在人工数据和MNIST数据集上进行了实验来证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信