Detection and Parameter Estimation of R Peaks in ECG Signal Using Optimization Algorithm

Sheng-Ta Hsieh, Chun-Ling Lin
{"title":"Detection and Parameter Estimation of R Peaks in ECG Signal Using Optimization Algorithm","authors":"Sheng-Ta Hsieh, Chun-Ling Lin","doi":"10.1109/CANDARW.2018.00039","DOIUrl":null,"url":null,"abstract":"Accurate R-peak detection is very important for arrhythmia diagnosis. Our previous effective R detection algorithm consisted of three strategies: band-pass filter, adaptive definition of interesting block and dynamic threshold. Then, it adopted the optimization algorithm to replace the knowledge-based theory and found out the suitable parameters (F1, F2, N, W1, W2, β and µ) in R detection algorithm quickly and obtained the high performance of detecting R peaks (99.77%). In order to improve the performance of the previous study, this study proposes to add the median filter in the algorithm to correct baseline wander components of electrocardiography (ECG) signals. It is necessary to defined two parameters (T1 and T2) in median filter. Therefore, this study adopts particle swarm optimization (PSO) to find the suitable parameters (T1, T2, F1, F2, N, W1, W2, β and µ) in the proposed method. The proposed method is applied to MIT-BIH arrhythmia database. The results show that PSO can find out the suitable parameters in R detection algorithm and have a higher accuracy (99.95%) than one of the previous study.","PeriodicalId":329439,"journal":{"name":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate R-peak detection is very important for arrhythmia diagnosis. Our previous effective R detection algorithm consisted of three strategies: band-pass filter, adaptive definition of interesting block and dynamic threshold. Then, it adopted the optimization algorithm to replace the knowledge-based theory and found out the suitable parameters (F1, F2, N, W1, W2, β and µ) in R detection algorithm quickly and obtained the high performance of detecting R peaks (99.77%). In order to improve the performance of the previous study, this study proposes to add the median filter in the algorithm to correct baseline wander components of electrocardiography (ECG) signals. It is necessary to defined two parameters (T1 and T2) in median filter. Therefore, this study adopts particle swarm optimization (PSO) to find the suitable parameters (T1, T2, F1, F2, N, W1, W2, β and µ) in the proposed method. The proposed method is applied to MIT-BIH arrhythmia database. The results show that PSO can find out the suitable parameters in R detection algorithm and have a higher accuracy (99.95%) than one of the previous study.
基于优化算法的心电信号R峰检测与参数估计
准确的r峰检测对心律失常的诊断非常重要。我们之前的有效R检测算法包括三种策略:带通滤波器、自适应定义感兴趣块和动态阈值。然后,采用优化算法替代基于知识的理论,快速找到R检测算法中合适的参数(F1、F2、N、W1、W2、β和µ),获得了较高的R峰检测性能(99.77%)。为了提高前人研究的性能,本研究提出在算法中加入中值滤波来校正心电图信号的基线漂移分量。在中值滤波器中需要定义两个参数T1和T2。因此,本研究采用粒子群优化(PSO)方法,在提出的方法中寻找合适的参数(T1、T2、F1、F2、N、W1、W2、β和µ)。将该方法应用于MIT-BIH心律失常数据库。结果表明,粒子群算法能够在R检测算法中找到合适的参数,且准确率达到99.95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信