Smart Cache: An Optimized MapReduce Implementation of Frequent Itemset Mining

Dachuan Huang, Yang Song, R. Routray, Feng Qin
{"title":"Smart Cache: An Optimized MapReduce Implementation of Frequent Itemset Mining","authors":"Dachuan Huang, Yang Song, R. Routray, Feng Qin","doi":"10.1109/IC2E.2015.12","DOIUrl":null,"url":null,"abstract":"Frequent Item set Mining (FIM) is a classic data mining topic with many real world applications such as market basket analysis. Many algorithms including Apriori, FP-Growth, and Eclat were proposed in the FIM field. As the dataset size grows, researchers have proposed MapReduce version of FIM algorithms to meet the big data challenge. This paper proposes new improvements to the MapReduce implementation of FIM algorithm by introducing a cache layer and a selective online analyzer. We have evaluated the effectiveness and efficiency of Smart Cache via extensive experiments on four public datasets. Smart Cache can reduce on average 45.4%, and up to 97.0% of the total execution time compared with the state-of-the-art solution.","PeriodicalId":395715,"journal":{"name":"2015 IEEE International Conference on Cloud Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2015.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Frequent Item set Mining (FIM) is a classic data mining topic with many real world applications such as market basket analysis. Many algorithms including Apriori, FP-Growth, and Eclat were proposed in the FIM field. As the dataset size grows, researchers have proposed MapReduce version of FIM algorithms to meet the big data challenge. This paper proposes new improvements to the MapReduce implementation of FIM algorithm by introducing a cache layer and a selective online analyzer. We have evaluated the effectiveness and efficiency of Smart Cache via extensive experiments on four public datasets. Smart Cache can reduce on average 45.4%, and up to 97.0% of the total execution time compared with the state-of-the-art solution.
智能缓存:频繁项集挖掘的优化MapReduce实现
频繁项集挖掘(FIM)是一个经典的数据挖掘主题,在现实世界中有许多应用,如市场购物篮分析。在FIM领域提出了Apriori、FP-Growth、Eclat等算法。随着数据集规模的增长,研究人员提出了MapReduce版本的FIM算法来应对大数据的挑战。本文通过引入缓存层和选择性在线分析器,对FIM算法的MapReduce实现进行了新的改进。我们通过在四个公共数据集上进行广泛的实验来评估智能缓存的有效性和效率。与最先进的解决方案相比,智能缓存可以平均减少45.4%,最多可减少97.0%的总执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信