PCA sensitivity: The role of representative and outlier strides in gait sequence

V. M. Jerkovic, M. Djuric-Jovicic, M. Popovic
{"title":"PCA sensitivity: The role of representative and outlier strides in gait sequence","authors":"V. M. Jerkovic, M. Djuric-Jovicic, M. Popovic","doi":"10.1109/NEUREL.2012.6419982","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA) is a useful statistical technique for the reduction of data dimensionality. When applied to the accelerometer data in gait analysis PCA assigns common gait patterns among subjects or provides gait classification. In this paper, we study the results of PCA applied to datasets recorded with three-axial accelerometers placed on thigh, shank, and foot in subjects with hemiplegia. In particular, we analyze the impact of both representative stride (the most similar to all other strides in the sequence) and outlier stride (the most different from all other strides in the sequence) on PCA results. PCA sensitivity to data preparation was tested on three datasets: complete gait sequence, gait sequence without the outlier stride, and on representative stride.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Principal component analysis (PCA) is a useful statistical technique for the reduction of data dimensionality. When applied to the accelerometer data in gait analysis PCA assigns common gait patterns among subjects or provides gait classification. In this paper, we study the results of PCA applied to datasets recorded with three-axial accelerometers placed on thigh, shank, and foot in subjects with hemiplegia. In particular, we analyze the impact of both representative stride (the most similar to all other strides in the sequence) and outlier stride (the most different from all other strides in the sequence) on PCA results. PCA sensitivity to data preparation was tested on three datasets: complete gait sequence, gait sequence without the outlier stride, and on representative stride.
PCA敏感性:步态序列中代表性步幅和异常步幅的作用
主成分分析(PCA)是一种有用的数据降维统计技术。当PCA应用于步态分析中的加速度计数据时,它可以分配受试者之间的共同步态模式或提供步态分类。在本文中,我们研究了PCA应用于偏瘫患者大腿、小腿和足部三轴加速度计记录的数据集的结果。特别是,我们分析了代表性步幅(与序列中所有其他步幅最相似的步幅)和异常步幅(与序列中所有其他步幅最不同的步幅)对PCA结果的影响。在三个数据集上测试了PCA对数据准备的敏感性:完整的步态序列、没有异常步幅的步态序列和具有代表性的步幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信