Plankton Image Classification Based on Multiple Segmentations

N. Hirata, M. A. Fernandez, R. Lopes
{"title":"Plankton Image Classification Based on Multiple Segmentations","authors":"N. Hirata, M. A. Fernandez, R. Lopes","doi":"10.1109/CVAUI.2016.022","DOIUrl":null,"url":null,"abstract":"Due to image quality related issues, classification of plankton images, particularly of those collected in situ, strongly relies on shape features. Thus, image segmentation is a critical step in the classification pipeline. In general, the segmentation algorithm that leads to the best overall classification accuracy does not necessarily imply best classification accuracy with respect to each of the individual classes. In addition, in real time applications, changes in the environment or in the image acquisition devices require fast adjustments in the classification pipeline. Customizing segmentation algorithms for each situation may demand considerable effort. Motivated by these issues, we address the problem of using multiple segmentation algorithms and letting the classifier decide how to make best use of them. Some case studies and results are presented and discussed.","PeriodicalId":169345,"journal":{"name":"2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVAUI.2016.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Due to image quality related issues, classification of plankton images, particularly of those collected in situ, strongly relies on shape features. Thus, image segmentation is a critical step in the classification pipeline. In general, the segmentation algorithm that leads to the best overall classification accuracy does not necessarily imply best classification accuracy with respect to each of the individual classes. In addition, in real time applications, changes in the environment or in the image acquisition devices require fast adjustments in the classification pipeline. Customizing segmentation algorithms for each situation may demand considerable effort. Motivated by these issues, we address the problem of using multiple segmentation algorithms and letting the classifier decide how to make best use of them. Some case studies and results are presented and discussed.
基于多重分割的浮游生物图像分类
由于图像质量相关的问题,浮游生物图像的分类,特别是在原位收集的浮游生物图像,强烈依赖于形状特征。因此,图像分割是分类管道中的关键步骤。一般来说,导致最佳总体分类精度的分割算法并不一定意味着相对于每个单独的类的最佳分类精度。此外,在实时应用中,环境或图像采集设备的变化需要在分类管道中进行快速调整。针对每种情况定制分割算法可能需要相当大的努力。在这些问题的激励下,我们解决了使用多种分割算法并让分类器决定如何最好地利用它们的问题。提出并讨论了一些案例研究和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信