Prioritizing emergency evacuations under compounding levels of uncertainty

Lisa J. Einstein, Robert J. Moss, Mykel J. Kochenderfer
{"title":"Prioritizing emergency evacuations under compounding levels of uncertainty","authors":"Lisa J. Einstein, Robert J. Moss, Mykel J. Kochenderfer","doi":"10.1109/GHTC55712.2022.9910611","DOIUrl":null,"url":null,"abstract":"Well-executed emergency evacuations can save lives and reduce suffering. However, decision makers struggle to determine optimal evacuation policies given the chaos, uncertainty, and value judgments inherent in emergency evacuations. We propose and analyze a decision support tool for pre-crisis training exercises for teams preparing for civilian evacuations and explore the tool in the case of the 2021 U.S.-led evacuation from Afghanistan. We use different classes of Markov decision processes (MDPs) to capture compounding levels of uncertainty in (1) the priority category of who appears next at the gate for evacuation, (2) the distribution of priority categories at the population level, and (3) individuals’ claimed priority category. We compare the number of people evacuated by priority status under eight heuristic policies. The optimized MDP policy achieves the best performance compared to all heuristic baselines. We also show that accounting for the compounding levels of model uncertainty incurs added complexity without improvement in policy performance. Useful heuristics can be extracted from the optimized policies to inform human decision makers. We opensource all tools to encourage robust dialogue about the trade-offs, limitations, and potential of integrating algorithms into high-stakes humanitarian decision-making.","PeriodicalId":370986,"journal":{"name":"2022 IEEE Global Humanitarian Technology Conference (GHTC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Global Humanitarian Technology Conference (GHTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GHTC55712.2022.9910611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Well-executed emergency evacuations can save lives and reduce suffering. However, decision makers struggle to determine optimal evacuation policies given the chaos, uncertainty, and value judgments inherent in emergency evacuations. We propose and analyze a decision support tool for pre-crisis training exercises for teams preparing for civilian evacuations and explore the tool in the case of the 2021 U.S.-led evacuation from Afghanistan. We use different classes of Markov decision processes (MDPs) to capture compounding levels of uncertainty in (1) the priority category of who appears next at the gate for evacuation, (2) the distribution of priority categories at the population level, and (3) individuals’ claimed priority category. We compare the number of people evacuated by priority status under eight heuristic policies. The optimized MDP policy achieves the best performance compared to all heuristic baselines. We also show that accounting for the compounding levels of model uncertainty incurs added complexity without improvement in policy performance. Useful heuristics can be extracted from the optimized policies to inform human decision makers. We opensource all tools to encourage robust dialogue about the trade-offs, limitations, and potential of integrating algorithms into high-stakes humanitarian decision-making.
在复杂的不确定程度下确定紧急疏散的优先次序
执行得当的紧急疏散可以挽救生命,减少痛苦。然而,考虑到紧急疏散中固有的混乱、不确定性和价值判断,决策者很难确定最佳的疏散政策。我们提出并分析了一种决策支持工具,用于为准备平民撤离的团队进行危机前训练演习,并在2021年美国领导的从阿富汗撤离的情况下探索该工具。我们使用不同类别的马尔可夫决策过程(mdp)来捕获以下不确定性的复合水平:(1)谁是下一个出现在疏散门口的优先类别,(2)优先类别在总体水平上的分布,以及(3)个人声称的优先类别。我们比较了八种启发式策略下按优先状态疏散的人数。与所有启发式基线相比,优化后的MDP策略实现了最佳性能。我们还表明,考虑模型不确定性的复合水平会增加复杂性,而不会改善策略性能。可以从优化的策略中提取有用的启发式信息,以便为人类决策者提供信息。我们开放了所有工具的源代码,以鼓励有关将算法集成到高风险人道主义决策中的权衡、限制和潜力的有力对话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信