Embedded Low Power Controller for Autonomous Landing of UAV Using Artificial Neural Network

Ahmad Din, B. Bona, J. Morrissette, Moazzam Hussain, Massimo Violante, M. Naseem
{"title":"Embedded Low Power Controller for Autonomous Landing of UAV Using Artificial Neural Network","authors":"Ahmad Din, B. Bona, J. Morrissette, Moazzam Hussain, Massimo Violante, M. Naseem","doi":"10.1109/FIT.2012.42","DOIUrl":null,"url":null,"abstract":"We present real-time, stereo vision based autonomous landing system for small Unmanned Aerial Vehicles (UAV) onto an unknown landing target. The paper describes the algorithms and design of FPGA based co-processor implementing Artificial Neural Network (ANN) to implement real time object tracking, 3D position estimation using Visual Odometry(VO), Horizontal displacement and Euclidean distance from landing target. This approach doesn't require any explicit marker or landing target, it estimates attitude, track safe landing area, and compute distance and horizontal displacement form landing target. Experimental results show suitability of the real-time stereo vision landing approach using FPGA for tracking, that doesn't require any explicit landing marker.","PeriodicalId":166149,"journal":{"name":"2012 10th International Conference on Frontiers of Information Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2012.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present real-time, stereo vision based autonomous landing system for small Unmanned Aerial Vehicles (UAV) onto an unknown landing target. The paper describes the algorithms and design of FPGA based co-processor implementing Artificial Neural Network (ANN) to implement real time object tracking, 3D position estimation using Visual Odometry(VO), Horizontal displacement and Euclidean distance from landing target. This approach doesn't require any explicit marker or landing target, it estimates attitude, track safe landing area, and compute distance and horizontal displacement form landing target. Experimental results show suitability of the real-time stereo vision landing approach using FPGA for tracking, that doesn't require any explicit landing marker.
基于人工神经网络的无人机自主降落嵌入式低功耗控制器
我们提出了一种基于实时立体视觉的小型无人机(UAV)自动着陆系统,用于未知着陆目标。本文介绍了基于FPGA的协同处理器的算法和设计,利用人工神经网络(ANN)实现实时目标跟踪、三维位置估计、水平位移和与着陆目标的欧氏距离。该方法不需要任何明确的标记或着陆目标,可以估计姿态,跟踪安全着陆区域,计算与着陆目标的距离和水平位移。实验结果表明,基于FPGA的实时立体视觉着陆方法在不需要任何显式着陆标记的情况下具有良好的跟踪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信