A Multigraph Representation for Improved Unsupervised/Semi-supervised Learning of Human Actions

Simon Jones, Ling Shao
{"title":"A Multigraph Representation for Improved Unsupervised/Semi-supervised Learning of Human Actions","authors":"Simon Jones, Ling Shao","doi":"10.1109/CVPR.2014.110","DOIUrl":null,"url":null,"abstract":"Graph-based methods are a useful class of methods for improving the performance of unsupervised and semi-supervised machine learning tasks, such as clustering or information retrieval. However, the performance of existing graph-based methods is highly dependent on how well the affinity graph reflects the original data structure. We propose that multimedia such as images or videos consist of multiple separate components, and therefore more than one graph is required to fully capture the relationship between them. Accordingly, we present a new spectral method - the Feature Grouped Spectral Multigraph (FGSM) - which comprises the following steps. First, mutually independent subsets of the original feature space are generated through feature clustering. Secondly, a separate graph is generated from each feature subset. Finally, a spectral embedding is calculated on each graph, and the embeddings are scaled/aggregated into a single representation. Using this representation, a variety of experiments are performed on three learning tasks - clustering, retrieval and recognition - on human action datasets, demonstrating considerably better performance than the state-of-the-art.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Graph-based methods are a useful class of methods for improving the performance of unsupervised and semi-supervised machine learning tasks, such as clustering or information retrieval. However, the performance of existing graph-based methods is highly dependent on how well the affinity graph reflects the original data structure. We propose that multimedia such as images or videos consist of multiple separate components, and therefore more than one graph is required to fully capture the relationship between them. Accordingly, we present a new spectral method - the Feature Grouped Spectral Multigraph (FGSM) - which comprises the following steps. First, mutually independent subsets of the original feature space are generated through feature clustering. Secondly, a separate graph is generated from each feature subset. Finally, a spectral embedding is calculated on each graph, and the embeddings are scaled/aggregated into a single representation. Using this representation, a variety of experiments are performed on three learning tasks - clustering, retrieval and recognition - on human action datasets, demonstrating considerably better performance than the state-of-the-art.
改进的人类行为无监督/半监督学习的多图表示
基于图的方法是一类有用的方法,用于提高无监督和半监督机器学习任务的性能,例如聚类或信息检索。然而,现有的基于图的方法的性能高度依赖于关联图对原始数据结构的反映程度。我们提出,图像或视频等多媒体由多个独立的组件组成,因此需要多个图形来完全捕捉它们之间的关系。因此,我们提出了一种新的光谱方法-特征分组光谱多图(FGSM),该方法包括以下步骤。首先,通过特征聚类生成原始特征空间相互独立的子集;其次,从每个特征子集生成一个单独的图。最后,在每个图上计算谱嵌入,并将嵌入缩放/聚合为单个表示。使用这种表示,在人类动作数据集上对三个学习任务(聚类、检索和识别)进行了各种各样的实验,显示出比最先进的性能要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信