Small Target Detection in Sea Clutter by Time-Frequency Tri-Feature based SVM Detector

Dan Fang, Jia Su, Hao Li, Xiang Zhang, Yifei Fan, Tao Li
{"title":"Small Target Detection in Sea Clutter by Time-Frequency Tri-Feature based SVM Detector","authors":"Dan Fang, Jia Su, Hao Li, Xiang Zhang, Yifei Fan, Tao Li","doi":"10.1109/ICEICT51264.2020.9334232","DOIUrl":null,"url":null,"abstract":"A SVM detector utilizing three time-frequency features is proposed to discriminate floating small targets in sea clutter environment. The detector consists of three stages. Firstly, transform radar echoes into time-frequency domain. Then, three features, i.e. kurtosis, skewness and concentration, are extracted in the time-frequency domain. Finally, two-class support vector machine (SVM) detector is used to find floating small target under sea clutter background. The result of experiments using real datasets under different circumstances verifies the performance of our proposed method.","PeriodicalId":124337,"journal":{"name":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT51264.2020.9334232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A SVM detector utilizing three time-frequency features is proposed to discriminate floating small targets in sea clutter environment. The detector consists of three stages. Firstly, transform radar echoes into time-frequency domain. Then, three features, i.e. kurtosis, skewness and concentration, are extracted in the time-frequency domain. Finally, two-class support vector machine (SVM) detector is used to find floating small target under sea clutter background. The result of experiments using real datasets under different circumstances verifies the performance of our proposed method.
基于时频三特征的支持向量机海杂波小目标检测
提出了一种利用三个时频特征的支持向量机检测器来识别海杂波环境下的漂浮小目标。探测器由三级组成。首先,将雷达回波信号转换为时频域。然后,在时频域提取峰度、偏度和浓度三个特征;最后,利用两类支持向量机(SVM)检测器对海杂波背景下的浮动小目标进行识别。实际数据集在不同情况下的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信