{"title":"An Energy Efficient Hybrid FEC-ARQ Communication Scheme for Small Satellite Applications","authors":"Oliver Vassallo, Victor Buttigieg, M. Azzopardi","doi":"10.1109/cits52676.2021.9618067","DOIUrl":null,"url":null,"abstract":"With the extensive cost reductions associated with small satellites, low Earth orbit missions are increasingly becoming popular, mostly with universities and the New-Space industry. However, a persistent limitation associated with the smallest satellites is the significant reduction in energy resources that each satellite has at its disposal. This limitation poses a challenge when using advanced communication systems, particularly those employing advanced forward error correction such as low-density parity check (LDPC) codes. To conserve the high computational energy required to decode such codes, we propose a novel early termination stopping criterion for LDPC decoders that is based on detecting the periodicity of syndrome weight oscillations. The technique is independent of the operating signal-to-noise ratio and results in reductions better than 80%, in the computational energy expended on a well-known bit-flipping decoding algorithm. Real world results are presented using an ARM-based microcontroller.","PeriodicalId":211570,"journal":{"name":"2021 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"45 Suppl 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cits52676.2021.9618067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the extensive cost reductions associated with small satellites, low Earth orbit missions are increasingly becoming popular, mostly with universities and the New-Space industry. However, a persistent limitation associated with the smallest satellites is the significant reduction in energy resources that each satellite has at its disposal. This limitation poses a challenge when using advanced communication systems, particularly those employing advanced forward error correction such as low-density parity check (LDPC) codes. To conserve the high computational energy required to decode such codes, we propose a novel early termination stopping criterion for LDPC decoders that is based on detecting the periodicity of syndrome weight oscillations. The technique is independent of the operating signal-to-noise ratio and results in reductions better than 80%, in the computational energy expended on a well-known bit-flipping decoding algorithm. Real world results are presented using an ARM-based microcontroller.