Multivariate Markov Chain Model for Sales Demand Estimation in a Company

Annisa Martina
{"title":"Multivariate Markov Chain Model for Sales Demand Estimation in a Company","authors":"Annisa Martina","doi":"10.21108/ijoict.v7i2.604","DOIUrl":null,"url":null,"abstract":"Estimation of the number of demands for a product must be done correctly, so that the company can get maximum profit. Therefore, this study discusses how to estimate the amount of sales demand in a company correctly. The model that will be used to estimate sales demand is the Multivariate Markov Chain Model. This model can estimate the future state by observing the present state. The model requires parameter estimation values ​​first, namely the transition probability matrix and the weighted Markov chain, where in previous studies an estimation of the transition probability matrix has been carried out, so that in this study we will continue to estimate the weighted Markov chain parameters. This model is compatible with 5 data sequences (product types) defined as product 1, product 2, product 3, product 4, and product 5, with 6 conditions (no sales volume, very slow-moving, slow-moving, standard, fast moving, and very fast moving). As the result, the state probability for product 1, product 2 and product 3 in company 1 are stationary at state 6 (very fast moving), product 4 and product 5 are stationary at state 2 (very slow moving).","PeriodicalId":137090,"journal":{"name":"International Journal on Information and Communication Technology (IJoICT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information and Communication Technology (IJoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21108/ijoict.v7i2.604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Estimation of the number of demands for a product must be done correctly, so that the company can get maximum profit. Therefore, this study discusses how to estimate the amount of sales demand in a company correctly. The model that will be used to estimate sales demand is the Multivariate Markov Chain Model. This model can estimate the future state by observing the present state. The model requires parameter estimation values ​​first, namely the transition probability matrix and the weighted Markov chain, where in previous studies an estimation of the transition probability matrix has been carried out, so that in this study we will continue to estimate the weighted Markov chain parameters. This model is compatible with 5 data sequences (product types) defined as product 1, product 2, product 3, product 4, and product 5, with 6 conditions (no sales volume, very slow-moving, slow-moving, standard, fast moving, and very fast moving). As the result, the state probability for product 1, product 2 and product 3 in company 1 are stationary at state 6 (very fast moving), product 4 and product 5 are stationary at state 2 (very slow moving).
某公司销售需求估计的多元马尔可夫链模型
对产品需求数量的估计必须正确,这样公司才能获得最大的利润。因此,本研究探讨了如何正确估计公司的销售需求数量。用于估计销售需求的模型是多元马尔可夫链模型。这个模型可以通过观察现在的状态来估计未来的状态。该模型首先需要参数估计值,即转移概率矩阵和加权马尔可夫链,在之前的研究中已经对转移概率矩阵进行了估计,因此在本研究中我们将继续对加权马尔可夫链参数进行估计。该模型兼容产品1、产品2、产品3、产品4、产品5 5种数据序列(产品类型),有6种情况(无销量、极慢、慢、标准、快速、快速)。因此,公司1中的产品1、产品2和产品3的状态概率在状态6(非常快速移动)时是平稳的,产品4和产品5在状态2(非常缓慢移动)时是平稳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信