Differential Evolution with Neighborhood Search

Yuzhen Liu, Shoufu Li
{"title":"Differential Evolution with Neighborhood Search","authors":"Yuzhen Liu, Shoufu Li","doi":"10.1109/CINC.2010.5643890","DOIUrl":null,"url":null,"abstract":"In order to improve the ability of neighborhood search of differential evolutionary (DE) algorithm, we propose a new variant of DE with linear neighborhood search, called LiNDE, for global optimization problems (GOPs). LiNDE employs a linear combination of triple vectors taken randomly from evolutionary population. The main characteristics of LiNDE are less parameters and powerful neighborhood search ability. Experimental studies are carried out on a benchmark set, and the results show that LiNDE significantly improved the performance of DE.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to improve the ability of neighborhood search of differential evolutionary (DE) algorithm, we propose a new variant of DE with linear neighborhood search, called LiNDE, for global optimization problems (GOPs). LiNDE employs a linear combination of triple vectors taken randomly from evolutionary population. The main characteristics of LiNDE are less parameters and powerful neighborhood search ability. Experimental studies are carried out on a benchmark set, and the results show that LiNDE significantly improved the performance of DE.
基于邻域搜索的差分进化
为了提高差分进化算法的邻域搜索能力,针对全局优化问题,提出了一种基于线性邻域搜索的差分进化算法LiNDE。LiNDE采用从进化种群中随机抽取的三重向量的线性组合。LiNDE的主要特点是参数少,邻域搜索能力强。在一个基准集上进行了实验研究,结果表明LiNDE显著提高了DE的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信