Automated knowledge acquisition for a fuzzy classification problem

Tim Whitfort, C. Matthews, I. Jagielska
{"title":"Automated knowledge acquisition for a fuzzy classification problem","authors":"Tim Whitfort, C. Matthews, I. Jagielska","doi":"10.1109/ANNES.1995.499477","DOIUrl":null,"url":null,"abstract":"Genetic algorithms and neural networks are useful as automated knowledge acquisition tools for Fuzzy Systems. This paper describes the application of these techniques to a well known classification problem, namely the iris species classification problem. The performance of the resulting fuzzy systems exceed that reported for those derived using alternative methods. Preliminary work indicates that the use of genetic algorithms is the more flexible as it allows the simultaneous acquisition of fuzzy set parameters and fuzzy rules.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Genetic algorithms and neural networks are useful as automated knowledge acquisition tools for Fuzzy Systems. This paper describes the application of these techniques to a well known classification problem, namely the iris species classification problem. The performance of the resulting fuzzy systems exceed that reported for those derived using alternative methods. Preliminary work indicates that the use of genetic algorithms is the more flexible as it allows the simultaneous acquisition of fuzzy set parameters and fuzzy rules.
模糊分类问题的自动知识获取
遗传算法和神经网络是模糊系统知识获取的有效工具。本文描述了这些技术在一个众所周知的分类问题中的应用,即鸢尾物种分类问题。所得到的模糊系统的性能超过了使用替代方法得出的模糊系统的性能。初步研究表明,采用遗传算法可以同时获取模糊集参数和模糊规则,具有更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信