A performance evaluation of open source graph databases

PPAA '14 Pub Date : 2014-02-16 DOI:10.1145/2567634.2567638
R. McColl, David Ediger, Jason A. Poovey, D. Campbell, David A. Bader
{"title":"A performance evaluation of open source graph databases","authors":"R. McColl, David Ediger, Jason A. Poovey, D. Campbell, David A. Bader","doi":"10.1145/2567634.2567638","DOIUrl":null,"url":null,"abstract":"With the proliferation of large, irregular, and sparse relational datasets, new storage and analysis platforms have arisen to fill gaps in performance and capability left by conventional approaches built on traditional database technologies and query languages. Many of these platforms apply graph structures and analysis techniques to enable users to ingest, update, query, and compute on the topological structure of the network represented as sets of edges relating sets of vertices. To store and process Facebook-scale datasets, software and algorithms must be able to support data sources with billions of edges, update rates of millions of updates per second, and complex analysis kernels. These platforms must provide intuitive interfaces that enable graph experts and novice programmers to write implementations of common graph algorithms. In this paper, we conduct a qualitative study and a performance comparison of 12 open source graph databases using four fundamental graph algorithms on networks containing up to 256 million edges.","PeriodicalId":379963,"journal":{"name":"PPAA '14","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAA '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2567634.2567638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

With the proliferation of large, irregular, and sparse relational datasets, new storage and analysis platforms have arisen to fill gaps in performance and capability left by conventional approaches built on traditional database technologies and query languages. Many of these platforms apply graph structures and analysis techniques to enable users to ingest, update, query, and compute on the topological structure of the network represented as sets of edges relating sets of vertices. To store and process Facebook-scale datasets, software and algorithms must be able to support data sources with billions of edges, update rates of millions of updates per second, and complex analysis kernels. These platforms must provide intuitive interfaces that enable graph experts and novice programmers to write implementations of common graph algorithms. In this paper, we conduct a qualitative study and a performance comparison of 12 open source graph databases using four fundamental graph algorithms on networks containing up to 256 million edges.
开源图形数据库的性能评估
随着大型、不规则和稀疏关系数据集的激增,新的存储和分析平台已经出现,以填补基于传统数据库技术和查询语言的传统方法在性能和功能上留下的空白。这些平台中的许多应用图结构和分析技术,使用户能够摄取、更新、查询和计算网络的拓扑结构,这些拓扑结构表示为与顶点集相关的边集。为了存储和处理facebook规模的数据集,软件和算法必须能够支持具有数十亿条边的数据源,每秒数百万次更新的更新速率以及复杂的分析内核。这些平台必须提供直观的界面,使图形专家和新手程序员能够编写通用图形算法的实现。在本文中,我们在包含多达2.56亿个边的网络上使用四种基本图算法对12个开源图数据库进行了定性研究和性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信