{"title":"Reduced MFCC Feature Extraction Dimension for Acoustic Classification of Bee Swarm Activity","authors":"A. Zgank","doi":"10.1109/ELEKTRO53996.2022.9803441","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach, how to speed up the acoustic classification of bee swarm activity. The proposed system could be used as a daily monitoring solution for beehives, especially if they are located remotely. Recorded audio signal was used for acoustic classification with the Mel-frequency cepstral coefficients and hidden Markov acoustic models. The research objective was to analyze the influence of the reduced number of feature extraction coefficients on classification accuracy and real-time factor. Experiments were carried out with the Open Source Beehives Project audio recordings. The baseline system achieved 86,00% classification accuracy. The optimal acoustic classification system with 6 Mel-frequency cepstral coefficients achieved 85.38% accuracy and a 22.1% speed improvement over the baseline system.","PeriodicalId":396752,"journal":{"name":"2022 ELEKTRO (ELEKTRO)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 ELEKTRO (ELEKTRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO53996.2022.9803441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an approach, how to speed up the acoustic classification of bee swarm activity. The proposed system could be used as a daily monitoring solution for beehives, especially if they are located remotely. Recorded audio signal was used for acoustic classification with the Mel-frequency cepstral coefficients and hidden Markov acoustic models. The research objective was to analyze the influence of the reduced number of feature extraction coefficients on classification accuracy and real-time factor. Experiments were carried out with the Open Source Beehives Project audio recordings. The baseline system achieved 86,00% classification accuracy. The optimal acoustic classification system with 6 Mel-frequency cepstral coefficients achieved 85.38% accuracy and a 22.1% speed improvement over the baseline system.